Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

被引:14
作者
Chrystal, C. [1 ]
Burrell, K. H. [2 ]
Grierson, B. A. [3 ]
Staebler, G. M. [2 ]
Solomon, W. M. [3 ]
Wang, W. X. [3 ]
Rhodes, T. L. [4 ]
Schmitz, L. [4 ]
Kinsey, J. E. [2 ]
Lao, L. L. [2 ]
deGrassie, J. S. [2 ]
Mordijck, S. [5 ]
Meneghini, O. [6 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[4] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[5] Coll William & Mary, Williamsburg, VA 23187 USA
[6] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA
关键词
MOMENTUM TRANSPORT; TOROIDAL ROTATION; SHEAR; PARADIGM; VELOCITY; IONS;
D O I
10.1063/1.4887296
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the (R) over right arrow x (B) over right arrow shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Core barrier formation near integer q surfaces in DIII-D [J].
Austin, M. E. ;
Burrell, K. H. ;
Gentle, K. W. ;
Gohil, P. ;
Greenfield, C. M. ;
Groebner, R. J. ;
Heidbrink, W. W. ;
Luo, Y. ;
Kinsey, J. E. ;
Makowski, M. A. ;
McKee, G. R. ;
Nazikian, R. ;
Petty, C. C. ;
Prater, R. ;
Rhodes, T. L. ;
Shafer, M. W. ;
Van Zeeland, M. A. .
PHYSICS OF PLASMAS, 2006, 13 (08)
[2]   Comparison of toroidal rotation velocities of different impurity ions in the DIII-D tokamak [J].
Baylor, LR ;
Burrell, KH ;
Groebner, RJ ;
Houlberg, WA ;
Ernst, DP ;
Murakami, M ;
Wade, MR .
PHYSICS OF PLASMAS, 2004, 11 (06) :3100-3105
[3]   Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experimenta) [J].
Bell, R. E. ;
Andre, R. ;
Kaye, S. M. ;
Kolesnikov, R. A. ;
LeBlanc, B. P. ;
Rewoldt, G. ;
Wang, W. X. ;
Sabbagh, S. A. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[4]   Poloidal rotation in TFTR reversed shear plasmas [J].
Bell, RE ;
Levinton, FM ;
Batha, SH ;
Synakowski, EJ ;
Zarnstorff, MC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1429-1432
[5]  
Bell RE, 2000, AIP CONF PROC, V547, P39, DOI 10.1063/1.1361778
[6]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[7]   Indirect measurement of poloidal rotation using inboard-outboard asymmetry of toroidal rotation and comparison with neoclassical predictions [J].
Bortolon, A. ;
Camenen, Y. ;
Karpushov, A. N. ;
Duval, B. P. ;
Andrebe, Y. ;
Federspiel, L. ;
Sauter, O. .
NUCLEAR FUSION, 2013, 53 (02)
[8]  
Burrell K. H., PHYS PLASMAS UNPUB
[10]   Toroidal flow and radial particle flux in tokamak plasmas [J].
Callen, J. D. ;
Cole, A. J. ;
Hegna, C. C. .
PHYSICS OF PLASMAS, 2009, 16 (08)