Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress

被引:1627
作者
Haze, K [1 ]
Yoshida, H [1 ]
Yanagi, H [1 ]
Yura, T [1 ]
Mori, K [1 ]
机构
[1] HSP Res Inst, Shimogyo Ku, Kyoto 6008813, Japan
关键词
D O I
10.1091/mbc.10.11.3787
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in PR-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.
引用
收藏
页码:3787 / 3799
页数:13
相关论文
共 59 条
[1]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[2]   Roles for proteolysis and trafficking in notch maturation and signal transduction [J].
Chan, YM ;
Jan, YN .
CELL, 1998, 94 (04) :423-426
[3]   THE SUBNUCLEAR LOCALIZATION OF TRANSFER-RNA LIGASE IN YEAST [J].
CLARK, MW ;
ABELSON, J .
JOURNAL OF CELL BIOLOGY, 1987, 105 (04) :1515-1526
[4]   TRANSCRIPTIONAL INDUCTION OF GENES ENCODING ENDOPLASMIC-RETICULUM RESIDENT PROTEINS REQUIRES A TRANSMEMBRANE PROTEIN-KINASE [J].
COX, JS ;
SHAMU, CE ;
WALTER, P .
CELL, 1993, 73 (06) :1197-1206
[5]   The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane [J].
Cox, JS ;
Chapman, RE ;
Walter, P .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (09) :1805-1814
[6]   A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response [J].
Cox, JS ;
Walter, P .
CELL, 1996, 87 (03) :391-404
[7]  
DIGNAM JD, 1983, METHOD ENZYMOL, V101, P582
[8]  
FRANZUSOFF A, 1991, METHOD ENZYMOL, V194, P662
[9]   PROTEIN FOLDING IN THE CELL [J].
GETHING, MJ ;
SAMBROOK, J .
NATURE, 1992, 355 (6355) :33-45
[10]   Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [J].
Harding, HP ;
Zhang, YH ;
Ron, D .
NATURE, 1999, 397 (6716) :271-274