Automatic Classification of Proximal Femur Fractures Based on Attention Models

被引:18
作者
Kazi, Anees [1 ]
Albarqouni, Shadi [1 ]
Sanchez, Amelia Jimenez [1 ]
Kirchhoff, Sonja [2 ]
Biberthaler, Peter [1 ,3 ]
Navab, Nassir [1 ,4 ]
Mateus, Diana [1 ]
机构
[1] Tech Univ Munich, Comp Aided Med Procedures, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Inst Clin Radiol, Munich, Germany
[3] Tech Univ Munich, Klinikum Rechts Isar, Dept Trauma Surg, Munich, Germany
[4] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
来源
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017) | 2017年 / 10541卷
关键词
D O I
10.1007/978-3-319-67389-9_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We target the automatic classification of fractures from clinical X-Ray images following the Arbeitsgemeinschaft Osteosynthese (AO) classification standard. We decompose the problem into the localization of the region-of-interest (ROI) and the classification of the localized region. Our solution relies on current advances in multi-task end-to-end deep learning. More specifically, we adapt an attention model known as Spatial Transformer (ST) to learn an image-dependent localization of the ROI trained only from image classification labels. As a case study, we focus here on the classification of proximal femur fractures. We provide a detailed quantitative and qualitative validation on a dataset of 1000 images and report high accuracy with regard to inter-expert correlation values reported in the literature.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 13 条
[1]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[2]  
[Anonymous], IEEE COMPUTER VISION
[3]   DIFFRACT: DIaphyseal Femur FRActure Classifier SysTem [J].
Bayram, Fatih ;
Cakiroglu, Murat .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (01) :157-171
[4]   Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT [J].
Burns, Joseph E. ;
Yao, Jianhua ;
Munoz, Hector ;
Summers, Ronald M. .
RADIOLOGY, 2016, 278 (01) :64-73
[5]   Detection of Wrist Fractures in X-Ray Images [J].
Ebsim, Raja ;
Naqvi, Jawad ;
Cootes, Tim .
CLINICAL IMAGE-BASED PROCEDURES: TRANSLATIONAL RESEARCH IN MEDICAL IMAGING, 2016, 9958 :1-8
[6]  
Grun F., 2016, ICML VIS DEEP LEARN
[7]  
Jaderberg M., 2015, NIPS 15 P 28 INT C N, DOI DOI 10.48550/ARXIV.1506.02025
[8]   Reliability of classification systems for intertrochanteric fractures of the proximal femur in experienced orthopaedic surgeons [J].
Jin, WJ ;
Dai, LY ;
Cui, YM ;
Zhou, Q ;
Jiang, LS ;
Lu, H .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2005, 36 (07) :858-861
[9]   Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting [J].
Lindner, C. ;
Thiagarajah, S. ;
Wilkinson, J. M. ;
Wallis, G. A. ;
Cootes, T. F. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) :1462-1472
[10]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298