Ultimate Permeation Across Atomically Thin Porous Graphene

被引:757
作者
Celebi, Kemal [1 ]
Buchheim, Jakob [1 ]
Wyss, Roman M. [1 ]
Droudian, Amirhossein [1 ]
Gasser, Patrick [1 ]
Shorubalko, Ivan [2 ]
Kye, Jeong-Il [3 ]
Lee, Changho [3 ]
Park, Hyung Gyu [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] EMPA Swiss Fed Labs Mat Sci & Technol, Lab Elect Metrol Reliabil, CH-8600 Dubendorf, Switzerland
[3] LG Elect Adv Res Inst, Mat & Components R&D Lab, Seoul 137724, South Korea
基金
瑞士国家科学基金会;
关键词
GAS SEPARATION; HIGH-SELECTIVITY; HIGH-FLUX; MEMBRANES; TRANSPORT; ULTRAFILTRATION; PERMEABILITY; FLOWS;
D O I
10.1126/science.1249097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A two-dimensional (2D) porous layer can make an ideal membrane for separation of chemical mixtures because its infinitesimal thickness promises ultimate permeation. Graphene-with great mechanical strength, chemical stability, and inherent impermeability-offers a unique 2D system with which to realize this membrane and study the mass transport, if perforated precisely. We report highly efficient mass transfer across physically perforated double-layer graphene, having up to a few million pores with narrowly distributed diameters between less than 10 nanometers and 1 micrometer. The measured transport rates are in agreement with predictions of 2D transport theories. Attributed to its atomic thicknesses, these porous graphene membranes show permeances of gas, liquid, and water vapor far in excess of those shown by finite-thickness membranes, highlighting the ultimate permeation these 2D membranes can provide.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 35 条
[1]   Membrane Gas Separation: A Review/State of the Art [J].
Bernardo, P. ;
Drioli, E. ;
Golemme, G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) :4638-4663
[2]   Impermeability of graphene and its applications [J].
Berry, Vikas .
CARBON, 2013, 62 :1-10
[3]  
Brewer S. A., 2011, RECENT PAT MAT SCI, V4, P1, DOI [10.2174/1874465611104010001, DOI 10.2174/1874-464811104010001]
[4]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[5]   Evolutionary Kinetics of Graphene Formation on Copper [J].
Celebi, Kemal ;
Cole, Matthew T. ;
Choi, Jong Won ;
Wyczisk, Frederic ;
Legagneux, Pierre ;
Rupesinghe, Nalin ;
Robertson, John ;
Teo, Kenneth B. K. ;
Park, Hyung Gyu .
NANO LETTERS, 2013, 13 (03) :967-974
[6]   High-selectivity, high-flux silica membranes for gas separation [J].
de Vos, RM ;
Verweij, H .
SCIENCE, 1998, 279 (5357) :1710-1711
[7]   Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes [J].
Dongari, Nishanth ;
Sharma, Ashutosh ;
Durst, Franz .
MICROFLUIDICS AND NANOFLUIDICS, 2009, 6 (05) :679-692
[8]   Silicon carbide membranes for gas separation applications [J].
Elyassi, Bahman ;
Sahimi, Muhammad ;
Tsotsis, Theodore T. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 288 (1-2) :290-297
[9]  
Freeman B., 2006, MAT SCI MEMBRANES GA
[10]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73