Volume and quantizations

被引:73
作者
Lewandowski, J
机构
[1] Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00-681 Warszawa
关键词
D O I
10.1088/0264-9381/14/1/010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The differential structure of the Ashtekar-Isham quantum configuration space of canonical gravity allows the expression of the operators, representing various geometrical objects, by compact analytic formulae. In this paper such a formula is presented for the Rovelli-Smolin volume operator. This operator is compared with the quantum volume defined by Ashtekar and Lewandowski and a difference is indicated.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 26 条
[1]   Generalized Wick transform for gravity [J].
Ashtekar, A .
PHYSICAL REVIEW D, 1996, 53 (06) :R2865-R2869
[2]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[3]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[4]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[5]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[6]  
ASHTEKAR A, 1995, IN PRESS P 14 TRIANN
[7]  
Ashtekar A., 1994, Knots and Quantum Gravity
[8]  
Ashtekar Abhay., 1991, LECT NONPERTURBATIVE
[9]  
ASHTKEAR A, QUANTUM THEORY GEOME, V2
[10]  
BAEZ J, 1994, P C QUANT TOP