Hazy Transparent Cellulose Nanopaper

被引:86
作者
Hsieh, Ming-Chun [1 ]
Koga, Hirotaka [1 ]
Suganuma, Katsuaki [1 ]
Nogi, Masaya [1 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
日本学术振兴会;
关键词
NANOFIBER PAPER; NETWORKS; STRENGTH; FILMS;
D O I
10.1038/srep41590
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3-15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 mu m thickness, their total transmittance are 89.3-91.5% and haze values are 4.9-11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 mu m thickness, their total transmittance were constant at 88.6-92.1% but their haze value were 27.3-86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295-305 degrees C), and low thermal expansion (8.5-10.6 ppm/K) because of their high density (1.29-1.55 g/cm(3)) and crystallinity (73-80%).
引用
收藏
页数:7
相关论文
共 29 条
[1]   Obtaining cellulose nanofibers with a uniform width of 15 nm from wood [J].
Abe, Kentaro ;
Iwamoto, Shinichiro ;
Yano, Hiroyuki .
BIOMACROMOLECULES, 2007, 8 (10) :3276-3278
[2]  
Alexander LE, 1979, XRAY DIFFRACTION MET, P423
[3]   Oxygen and oil barrier properties of microfibrillated cellulose films and coatings [J].
Aulin, Christian ;
Gallstedt, Mikael ;
Lindstrom, Tom .
CELLULOSE, 2010, 17 (03) :559-574
[4]   Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films [J].
Diaz, Jairo A. ;
Ye, Zhijiang ;
Wu, Xiawa ;
Moore, Arden L. ;
Moon, Robert J. ;
Martini, Ashlie ;
Boday, Dylan J. ;
Youngblood, Jeffrey P. .
BIOMACROMOLECULES, 2014, 15 (11) :4096-4101
[5]   Development, application and commercialization of transparent paper [J].
Fang, Zhiqiang ;
Zhu, Hongli ;
Preston, Colin ;
Hu, Liangbing .
TRANSLATIONAL MATERIALS RESEARCH, 2014, 1 (01)
[6]   Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array [J].
Fujisaki, Yoshihide ;
Koga, Hirotaka ;
Nakajima, Yoshiki ;
Nakata, Mitsuru ;
Tsuji, Hiroshi ;
Yamamoto, Toshihiro ;
Kurita, Taiichiro ;
Nogi, Masaya ;
Shimidzu, Naoki .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (12) :1657-1663
[7]   Selective Permeation of Hydrogen Gas Using Cellulose Nanofibril Film [J].
Fukuzumi, Hayaka ;
Fujisawa, Shuji ;
Saito, Tsuguyuki ;
Isogai, Akira .
BIOMACROMOLECULES, 2013, 14 (05) :1705-1709
[8]   Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Wata, Tadahisa ;
Kumamoto, Yoshiaki ;
Isogai, Akira .
BIOMACROMOLECULES, 2009, 10 (01) :162-165
[9]   Electrically conductive lines on cellulose nanopaper for flexible electrical devices [J].
Hsieh, Ming-Chun ;
Kim, Changjae ;
Nogi, Masaya ;
Suganuma, Katsuaki .
NANOSCALE, 2013, 5 (19) :9289-9295
[10]   A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite [J].
Inui, Tetsuji ;
Koga, Hirotaka ;
Nogi, Masaya ;
Komoda, Natsuki ;
Suganuma, Katsuaki .
ADVANCED MATERIALS, 2015, 27 (06) :1112-1116