Communication between ClpX and ClpP during substrate processing and degradation

被引:115
作者
Joshi, SA
Hersch, GL
Baker, TA
Sauer, RT
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Howard Hughes Med Inst, Cambridge, MA 02139 USA
关键词
D O I
10.1038/nsmb752
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the ClpXP compartmental protease, ring hexamers of the AAA(+) ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP 14 peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.
引用
收藏
页码:404 / 411
页数:8
相关论文
共 46 条
[1]   At sixes and sevens: Characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease [J].
Beuron, F ;
Maurizi, MR ;
Belnap, DM ;
Kocsis, E ;
Booy, FP ;
Kessel, M ;
Steven, AC .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 123 (03) :248-259
[2]   The structures of HsIU and ATP-dependent protease HsIU-HsIV [J].
Bochtler, M ;
Hartmann, C ;
Song, HK ;
Bourenkov, GP ;
Bartunik, HD ;
Huber, R .
NATURE, 2000, 403 (6771) :800-805
[3]   Crystal structure of heat shock locus V (HslV) from Escherichia coli [J].
Bochtler, M ;
Ditzel, L ;
Groll, M ;
Huber, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6070-6074
[4]   Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing [J].
Burton, RE ;
Baker, TA ;
Sauer, RT .
PROTEIN SCIENCE, 2003, 12 (05) :893-902
[5]   Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals [J].
Flynn, JM ;
Neher, SB ;
Kim, YI ;
Sauer, RT ;
Baker, TA .
MOLECULAR CELL, 2003, 11 (03) :671-683
[6]   A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 [J].
Glickman, MH ;
Rubin, DM ;
Coux, O ;
Wefes, I ;
Pfeifer, G ;
Cjeka, Z ;
Baumeister, W ;
Fried, VA ;
Finley, D .
CELL, 1998, 94 (05) :615-623
[7]   Regulatory subunits of energy-dependent proteases [J].
Gottesman, S ;
Maurizi, MR ;
Wickner, S .
CELL, 1997, 91 (04) :435-438
[8]   The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system [J].
Gottesman, S ;
Roche, E ;
Zhou, YN ;
Sauer, RT .
GENES & DEVELOPMENT, 1998, 12 (09) :1338-1347
[9]   Protein quality control: Triage by chaperones and proteases [J].
Gottesman, S ;
Wickner, S ;
Maurizi, MR .
GENES & DEVELOPMENT, 1997, 11 (07) :815-823
[10]   Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP [J].
Grimaud, R ;
Kessel, M ;
Beuron, F ;
Steven, AC ;
Maurizi, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12476-12481