Secure communication with single-photon two-qubit states

被引:105
作者
Beige, A
Englert, BG
Kurtsiefer, C
Weinfurter, H
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Tech Univ Wien, Atom Inst, A-1020 Vienna, Austria
[3] Univ Munich, Sekt Phys, D-80799 Munich, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 28期
关键词
D O I
10.1088/0305-4470/35/28/103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a cryptographic scheme that is deterministic: Alice sends single photons to Bob, and each and every photon detected supplies one key bit-no photon is wasted. This is in marked contrast to other schemes in which a random process decides whether the next photon sent will contribute to the key or not. The determinism is achieved by preparing the photons in two-qubit states, rather than the one-qubit states used in conventional schemes. In particular, we consider the realistic situation in which one qubit is the photon polarization and the other a spatial alternative. Further, we show how one can exploit the deterministic nature for direct secure communication, that is without the need-for establishing A shared key first.
引用
收藏
页码:L407 / L413
页数:7
相关论文
共 18 条
[1]  
BEIGE A, 2002, MATH QUANTUM COMPUTA
[2]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[5]  
BOUWMEESTER D, 2000, PHYSICS QUANTUM INFO
[6]   Quantum key distribution in the Holevo limit [J].
Cabello, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5635-5638
[7]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[8]   Universal unitary gate for single-photon two-qubit states [J].
Englert, BG ;
Kurtsiefer, C ;
Weinfurter, H .
PHYSICAL REVIEW A, 2001, 63 (03) :1-10
[9]   Optimal eavesdropping in quantum cryptography .1. Information bound and optimal strategy [J].
Fuchs, CA ;
Gisin, N ;
Griffiths, RB ;
Niu, CS ;
Peres, A .
PHYSICAL REVIEW A, 1997, 56 (02) :1163-1172
[10]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195