Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation

被引:549
作者
Volodkin, DV
Petrov, AI
Prevot, M
Sukhorukov, GB [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, D-14476 Potsdam, Germany
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia
[3] Inst Theoret & Expt Biophys, Pushchino 142290, Moscow, Russia
关键词
D O I
10.1021/la036177z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach to fabricate polyelectrolyte microcapsules is based on exploiting porous inorganic microparticles of calcium carbonate. Porous CaCO3 microparticles (4.5-5.0 microns) were synthesized and characterized by scanning electron microscopy and the Brunauer-Emmett-Teller method of nitrogen adsorption/desorption to get a surface area of 8.8 m(2)/g and an average pore size of 35 nm. These particles were used as templates for polyelectrolyte, layer-by-layer assembly of two oppositely charged polyelectrolytes, poly(styrene sulfonate) and poly(allylamine hydrochloride). Calcium carbonate core dissolution resulted in formation of polyelectrolyte microcapsules with an internal matrix consisting of a polyelectrolyte complex. Microcapsules with an internal matrix were analyzed by confocal Raman spectroscopy, scanning electron microscopy, force microscopy, and confocal laser-scanning fluorescence microscopy. The structure was found to be dependent on a number of polyelectrolyte adsorption treatments. Capsules have a very high loading capacity for macromolecules, which can be incorporated into the capsules by capturing them from the surrounding medium into the capsules. In this paper, we investigated the loading by dextran and bovine serum albumin as macromolecules. The amount of entrapped macromolecules was determined by two independent methods and found to be up to 15 pg per microcapsule.
引用
收藏
页码:3398 / 3406
页数:9
相关论文
共 39 条
[1]   Nano-encapsulation of furosemide microcrystals for controlled drug release [J].
Ai, H ;
Jones, SA ;
de Villiers, MM ;
Lvov, YM .
JOURNAL OF CONTROLLED RELEASE, 2003, 86 (01) :59-68
[2]   Sustained release properties of polyelectrolyte multilayer capsules [J].
Antipov, AA ;
Sukhorukov, GB ;
Donath, E ;
Möhwald, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) :2281-2284
[3]   Carbonate microparticles for hollow polyelectrolyte capsules fabrication [J].
Antipov, AA ;
Shchukin, D ;
Fedutik, Y ;
Petrov, AI ;
Sukhorukov, GB ;
Möhwald, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 224 (1-3) :175-183
[4]   Loading the multilayer dextran sulfate/protamine microsized capsules with peroxidase [J].
Balabushevich, NG ;
Tiourina, OP ;
Volodkin, DV ;
Larionova, NI ;
Sukhorukov, GB .
BIOMACROMOLECULES, 2003, 4 (05) :1191-1197
[5]  
Bertrand P, 2000, MACROMOL RAPID COMM, V21, P319, DOI 10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO
[6]  
2-7
[7]  
Bobreshova ME, 1999, BIOFIZIKA+, V44, P813
[8]  
Cölfen H, 2001, CHEM-EUR J, V7, P106
[9]   Fabrication of micro reaction cages with tailored properties [J].
Dähne, L ;
Leporatti, S ;
Donath, E ;
Möhwald, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (23) :5431-5436
[10]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835