Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions

被引:78
作者
Otsuka, K [1 ]
Abe, Y
Kanai, N
Kobayashi, Y
Takenaka, S
Tanabe, E
机构
[1] Tokyo Inst Technol, Grad Sch Sci & Engn, Dept Appl Chem, Meguro Ku, Tokyo 1528552, Japan
[2] Hiroshima Prefectural Inst Ind Sci & Technol, Higashihiroshima 7390046, Japan
关键词
carbon nanotubes; catalytically grown carbon and carbon fibers; transmission electron microscopy; microstructure;
D O I
10.1016/j.carbon.2003.12.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane, n-hexane, benzene, and cyclopentadiene were decomposed at a relatively mild temperature (773 K) over a Ni catalyst supported on either vapor grown carbon fibers (VGCF) or graphitized carbon fibers (GCF). Transmission electron microscopy showed that the morphology of the fibers changed according to hydrocarbon and particle size. Decomposition of methane and n-hexane produced fishbone-type fibers. The fibers from n-hexane sometimes showed intermittent hollow structures but the diameters of the fibers were widely distributed. Decomposition of benzene and cyclopentadiene mainly produced winding type carbon nanotubes of relatively uniform diameters (10-20 nm). Bidirectional fishbone-type fibers (fibers growing outward from a central catalyst particle) were also observed as a by-product. Small Ni particles (10-20 nm) with stretched tails were present on the tips of tubular fibers, some of which frequently changed growth direction. The varying tubular morphologies can be ascribed to liquid-like Ni particles resulting from the freezing point depression due to a fast dissolution of carbons during decomposition of benzene or cyclopentadiene. The formation of bidirectional fibers was also observed in the decomposition of n-hexane. Relatively large well-faceted Ni particles (diameter 50-110 nm) grew bidirectional fibers. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 24 条
[2]   CRYSTALLOGRAPHIC ORIENTATIONS OF CATALYTIC PARTICLES IN FILAMENTOUS CARBON, CASE OF SIMPLE CONICAL PARTICLES [J].
AUDIER, M ;
OBERLIN, A ;
COULON, M .
JOURNAL OF CRYSTAL GROWTH, 1981, 55 (03) :549-556
[3]   FORMATION OF FILAMENTOUS CARBON FROM IRON, COBALT AND CHROMIUM CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
HARRIS, PS ;
THOMAS, RB ;
WAITE, RJ .
JOURNAL OF CATALYSIS, 1973, 30 (01) :86-95
[4]  
Baker RTK, 1997, STUD SURF SCI CATAL, V111, P99
[5]  
BENEDEK G, 2001, NANOSTRUCTURED CARBO
[6]  
BIRO LP, 2001, CARBON FILAMENTS NAN
[7]   THE FORMATION OF FILAMENTOUS CARBON ON IRON AND NICKEL-CATALYSTS .3. MORPHOLOGY [J].
BOELLAARD, E ;
DEBOKX, PK ;
KOCK, AJHM ;
GEUS, JW .
JOURNAL OF CATALYSIS, 1985, 96 (02) :481-490
[8]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510
[9]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[10]   PYROLYTIC CARBON NANOTUBES FROM VAPOR-GROWN CARBON-FIBERS [J].
ENDO, M ;
TAKEUCHI, K ;
KOBORI, K ;
TAKAHASHI, K ;
KROTO, HW ;
SARKAR, A .
CARBON, 1995, 33 (07) :873-881