The control of the post-buckling response in thin composite plates using smart technology

被引:41
作者
Thompson, SP [1 ]
Loughlan, J [1 ]
机构
[1] Cranfield Univ, Cranfield Coll Aeronaut, Struct & Mat Technol Grp, Cranfield MK43 0AL, Beds, England
关键词
adaptive control; shape memory alloy actuators; post-buckling; composite plates; smart technology;
D O I
10.1016/S0263-8231(00)00002-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Restoration forces, associated with embedded activated pre-strained shape memory alloy wires, have successfully been employed to enhance the post-buckling behaviour of various laminated plate structures. An extensive experimental and numerical programme has been conducted, the results of which will be presented. The manufacturing methodology of the hybrid SMA/carbon/epoxy plates is outlined. Such specimens feature 0.4-mm diameter shape memory alloy wires located within tubing at desired locations. Numerical thermal analysis has been employed to predict the non-uniform temperature profile, attributed to shape memory alloy activation through resistive heating, within the laminates. Structural finite element analysis has been employed to determine the hybrid plates' adaptive response while under the influence of a uniaxial compressive load in excess of its critical buckling value. It is shown that, utilising the considerable control authority generated, even for a small actuator volume fraction, the out-of-plane displacement of the post-buckled laminates can be significantly reduced. Such displacement alleviation allows for load redistribution away from the specimens' unloaded edges. With the increase in use of composite materials within aerospace platforms, it is envisaged that the hybrid adaptive SMA/laminate configuration will extend the operational performance over conventional materials and structures, particularly when the structure is exposed to an elevated temperature. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:231 / 263
页数:33
相关论文
共 25 条
[1]  
BAZ A, 1995, P SOC PHOTO-OPT INS, V2427, P30, DOI 10.1117/12.200932
[2]  
BAZ A, 1989, P ASME DES TECHN C M, P211
[3]  
BAZ A, 1991, P ADPA AIAA ASME SPI, P167
[4]  
BERLIN AA, 1995, P SOC PHOTO-OPT INS, V2447, P141, DOI 10.1117/12.209328
[5]   Stability of functionally graded shape memory alloy sandwich panels [J].
Birman, V .
SMART MATERIALS & STRUCTURES, 1997, 6 (03) :278-286
[6]  
Caffrey J., 1994, MSC NASTRAN LINEAR S
[7]  
CHANRASHEKHARA K, 1993, AMD ASME, V179, P163
[8]   Optimal stabilization of plate buckling [J].
Chase, JG ;
Bhashyam, S .
SMART MATERIALS & STRUCTURES, 1999, 8 (02) :204-211
[9]  
CROSS WB, 1969, NASACR1433
[10]  
Duerig T.W., 2013, Engineering aspects of shape memory alloys, V1st ed.