p53 activity is essential for normal development in Xenopus

被引:89
作者
Wallingford, JB [1 ]
Seufert, DW [1 ]
Virta, VC [1 ]
Vize, PD [1 ]
机构
[1] UNIV TEXAS,CTR DEV BIOL,DEPT ZOOL,AUSTIN,TX 78712
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0960-9822(06)00333-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The tumor suppressor p53 plays a key role in regulating the cell cycle and apoptosis in differentiated cells. Mutant mice lacking functional p53 develop normally but die from multiple neoplasms shortly after birth. There have been hints that p53 is involved in morphogenesis, but given the relatively normal development of p53 null mice, the significance of these data has been difficult to evaluate. To examine the role of p53 in vertebrate development, we have determined the results of blocking its activity in embryos of the frog Xenopus laevis. Results: Two different methods have been used to block p53 protein activity in developing Xenopus embryos - ectopic expression of dominant-negative forms of human p53 and ectopic expression of the p53 negative regulator, Xenopus dm-2. In both instances, inhibition of p53 activity blocked the ability of Xenopus early blastomeres to undergo differentiation and resulted in the formation of large cellular masses reminiscent of tumors. The ability of mutant p53 to induce such developmental tumors was suppressed by co-injection with wild-type human or wild-type Xenopus p53. Cells expressing mutant p53 activated zygotic gene expression and underwent the mid-blastula transition normally. Such cells continued to divide at approximately normal rates but did not form normal embryonic tissues and never underwent terminal differentiation, remaining as large, yolk-filled cell masses that were often associated with the neural tube or epidermis. Conclusions: In Xenopus, the maternal stockpile of p53 mRNA and protein seems to be essential for normal development. Inhibiting p53 function results in an early block to differentiation. Although it is possible that mutant human p53 proteins have a dominant gain-of-function or neomorphic activity in Xenopus, and that this is responsible for the development of tumors, most of the evidence indicates that this is not the case. Whatever the basis of the block to differentiation, these results indicate that Xenopus embryos are a sensitive system in which to explore the role of p53 in normal development and in developmental tumors. (C) Current Biology Ltd ISSN 0960-9822.
引用
收藏
页码:747 / 757
页数:11
相关论文
共 73 条
[1]   HIGH-FREQUENCY DEVELOPMENTAL ABNORMALITIES IN P53-DEFICIENT MICE [J].
ARMSTRONG, JF ;
KAUFMAN, MH ;
HARRISON, DJ ;
CLARKE, AR .
CURRENT BIOLOGY, 1995, 5 (08) :931-936
[2]   CHROMOSOME-17 DELETIONS AND P53 GENE-MUTATIONS IN COLORECTAL CARCINOMAS [J].
BAKER, SJ ;
FEARON, ER ;
NIGRO, JM ;
HAMILTON, SR ;
PREISINGER, AC ;
JESSUP, JM ;
VANTUINEN, P ;
LEDBETTER, DH ;
BARKER, DF ;
NAKAMURA, Y ;
WHITE, R ;
VOGELSTEIN, B .
SCIENCE, 1989, 244 (4901) :217-221
[3]  
BLAGOSKLONNY MV, 1995, ONCOGENE, V11, P933
[4]  
Carroll TJ, 1996, DEV DYNAM, V206, P131, DOI 10.1002/(SICI)1097-0177(199606)206:2<131::AID-AJA2>3.0.CO
[5]  
2-J
[6]   p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells [J].
Chen, XB ;
Ko, LJ ;
Jayaraman, L ;
Prives, C .
GENES & DEVELOPMENT, 1996, 10 (19) :2438-2451
[7]   MOLECULAR NATURE OF SPEMANNS ORGANIZER - THE ROLE OF THE XENOPUS HOMEOBOX GENE GOOSECOID [J].
CHO, KWY ;
BLUMBERG, B ;
STEINBEISSER, H ;
DEROBERTIS, EM .
CELL, 1991, 67 (06) :1111-1120
[8]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[9]  
COX LS, 1994, ONCOGENE, V9, P2951
[10]  
DALE L, 1987, DEVELOPMENT, V99, P527