A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas

被引:134
作者
Huang, Xin [1 ]
Lu, Qikai [1 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
关键词
High spatial resolution; Classification; SVM; Morphological; Texture; Feature extraction; MULTISCALE SEGMENTATION; EXTRACTION; FEATURES; INDEX; OBJECTS;
D O I
10.1016/j.isprsjprs.2014.01.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In recent years, it has been widely agreed that spatial features derived from textural, structural, and object-based methods are important information sources to complement spectral properties for accurate urban classification of high-resolution imagery. However, the spatial features always refer to a series of parameters, such as scales, directions, and statistical measures, leading to high-dimensional feature space. The high-dimensional space is almost impractical to deal with considering the huge storage and computational cost while processing high-resolution images. To this aim, we propose a novel multi-index learning (MIL) method, where a set of low-dimensional information indices is used to represent the complex geospatial scenes in high-resolution images. Specifically, two categories of indices are proposed in the study: (1) Primitive indices (PI): High-resolution urban scenes are represented using a group of primitives (e.g., building/shadow/vegetation) that are calculated automatically and rapidly; (2) Variation indices (VI): A couple of spectral and spatial variation indices are proposed based on the 3D wavelet transformation in order to describe the local variation in the joint spectral-spatial domains. In this way, urban landscapes can be decomposed into a set of low-dimensional and semantic indices replacing the high-dimensional but low-level features (e.g., textures). The information indices are then learned via the multi-kernel support vector machines. The proposed MIL method is evaluated using various high-resolution images including GeoEye-1, QuickBird, WorldView-2, and ZY-3, as well as an elaborate comparison to the state-of-the-art image classification algorithms such as object-based analysis, and spectral-spatial approaches based on textural and morphological features. It is revealed that the MIL method is able to achieve promising results with a low-dimensional feature space, and, provide a practical strategy for processing large-scale high-resolution images. (C) 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 36 条
[1]   Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses [J].
Aguera, Francisco ;
Aguilar, Fernando J. ;
Aguilar, Manuel A. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (06) :635-646
[2]   Automatic detection of residential buildings using LIDAR data and multispectral imagery [J].
Awrangjeb, Mohammad ;
Ravanbakhsh, Mehdi ;
Fraser, Clive S. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (05) :457-467
[3]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[4]   A multilevel context-based system for classification of very high spatial resolution images [J].
Bruzzone, Lorenzo ;
Carlin, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (09) :2587-2600
[5]   Rapid mapping of high resolution SAR scenes [J].
Dell'Acqua, F. ;
Gamba, P. ;
Lisini, G. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (05) :482-489
[6]   A spatial-spectral kernel-based approach for the classification of remote-sensing images [J].
Fauvel, M. ;
Chanussot, J. ;
Benediktsson, J. A. .
PATTERN RECOGNITION, 2012, 45 (01) :381-392
[7]   Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests [J].
Guo, Li ;
Chehata, Nesrine ;
Mallet, Clement ;
Boukir, Samia .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (01) :56-66
[8]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[9]   Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery [J].
Huang, Xin ;
Zhang, Liangpei ;
Li, Pingxiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) :260-264
[10]   An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery [J].
Huang, Xin ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :257-272