Bayesian analysis of botanical epidemics using stochastic compartmental models

被引:33
作者
Gibson, GJ [1 ]
Kleczkowski, A
Gilligan, CA
机构
[1] Heriot Watt Univ, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
关键词
Markov chain methods; plant-pathogen systems; biological control;
D O I
10.1073/pnas.0400829101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems.
引用
收藏
页码:12120 / 12124
页数:5
相关论文
共 21 条
[1]  
ANDERSON R M, 1991
[2]  
Andersson H., 2000, STOCHASTIC EPIDEMIC
[3]  
Barndorff-Nielsen OE., 1994, INFERENCE ASYMPTOTIC
[4]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117
[5]  
Deacon J.W., 1997, MODERN MYCOLOGY, V3rd
[6]   Solution of epidemic models with quenched transients [J].
Filipe, JAN ;
Gilligan, CA .
PHYSICAL REVIEW E, 2003, 67 (02) :8
[7]   Investigating mechanisms of spatiotemporal epidemic spread using stochastic models [J].
Gibson, GJ .
PHYTOPATHOLOGY, 1997, 87 (02) :139-146
[8]   Predicting variability in biological control of a plant-pathogen system using stochastic models [J].
Gibson, GJ ;
Gilligan, CA ;
Kleczkowski, A .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 266 (1430) :1743-1753
[9]  
Gibson GJ, 1998, IMA J MATH APPL MED, V15, P19
[10]   Markov chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant epidemiology [J].
Gibson, GJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1997, 46 (02) :215-233