Chaotic and stochastic functions

被引:24
作者
González, JA [1 ]
Pino, R [1 ]
机构
[1] Inst Venezolano Invest Cient, Ctr Fis, IVIC, Caracas 1020A, Venezuela
来源
PHYSICA A | 2000年 / 276卷 / 3-4期
关键词
chaos; exact solutions; randomness; stochastic processes; cryptography; disordered systems;
D O I
10.1016/S0378-4371(99)00423-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study chaotic functions that are exact solutions to nonlinear maps. A generalization of these functions (which cannot be expressed as a recursive procedure anymore) can produce truly random sequences. Even if the initial conditions are known exactly, the next values an in principle unpredictable. We present a mathematical formulation of an elementary stochastic process. Several applications are discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:425 / 440
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 1982, CRYPTOGRAPHY DATA SE, DOI DOI 10.5555/539308
[2]  
[Anonymous], 1981, SEMINUMERICAL ALGORI
[3]  
[Anonymous], 1989, COMPUTABILITY COMPUT
[4]  
Berliner L.M., 1992, Stat. Sci, V7, P69, DOI DOI 10.1214/SS/1177011444
[5]   Clarifying chaos: Examples and counterexamples [J].
Brown, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :219-249
[6]  
CHAITIN G, 1994, INT J BIFURCAT CHAOS, V4, P1
[7]   RANDOMNESS AND MATHEMATICAL PROOF [J].
CHAITIN, GJ .
SCIENTIFIC AMERICAN, 1975, 232 (05) :47-52
[8]  
Collins J. J., 1992, Computers in Physics, V6, P630, DOI 10.1063/1.168442
[9]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[10]  
Doob J. L., 1991, STOCHASTIC PROCESSES