The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase

被引:126
作者
Borghols, W. J. H. [1 ]
Lutzenkirchen-Hecht, D. [2 ]
Haake, U. [2 ]
van Eck, E. R. H. [3 ]
Mulder, F. M. [1 ]
Wagemaker, M. [1 ]
机构
[1] Delft Univ Technol, Interfacultair Reactor Inst, NL-2629 JB Delft, Netherlands
[2] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany
[3] Radboud Univ Nijmegen, Solid State NMR, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
关键词
X-RAY-ABSORPTION; LITHIUM INTERCALATION; TIO2; ANATASE; OPTICAL-PROPERTIES; K EDGES; MORPHOLOGY; OXIDES; RUTILE; NMR; SPECTROSCOPY;
D O I
10.1039/b823142g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Upon lithium insertion in the pristine TiO2 anatase phase the theoretical maximum of LiTiO2 can be reached in crystallite sizes less than similar to 10 nm, whereas bulk compositions appear limited to Lix approximate to 0.6TiO2 at room temperature. Both X-ray absorption spectroscopy (XAS) and ab initio calculations have been applied to probe the electronic structure of the newly formed LiTiO2 phase. These results indicate that a large majority of the Li-2s electrons reside at the Ti-3d(t(2g))/4s hybridized site. About 10% of these electrons are transferred to non-localized states which makes this compound a good electronic conductor. Ionic conductivity is probed by nuclear magnetic resonance (NMR) relaxation experiments indicating relatively small hopping rates between the Li-ion sites in LiTiO2. Formation of the poor ionic-conducting LiTiO2 at the surface of the particles explains why micro-anatase LixTiO2 is not able to reach the theoretical maximum capacity at room temperature, and why this theoretical maximum capacity reached in nano-sized materials cannot be (dis)charged at high rates.
引用
收藏
页码:5742 / 5748
页数:7
相关论文
共 36 条
  • [1] Electronic and optical properties of anatase TiO2
    Asahi, R
    Taga, Y
    Mannstadt, W
    Freeman, AJ
    [J]. PHYSICAL REVIEW B, 2000, 61 (11) : 7459 - 7465
  • [2] RELAXATION EFFECTS IN NUCLEAR MAGNETIC RESONANCE ABSORPTION
    BLOEMBERGEN, N
    PURCELL, EM
    POUND, RV
    [J]. PHYSICAL REVIEW, 1948, 73 (07): : 679 - 712
  • [3] Impact of nanosizing on lithiated rutile TiO2
    Borghols, Wouter J. H.
    Wagemaker, Marnix
    Lafont, Ugo
    Kelder, Erik M.
    Mulder, Fokko M.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (09) : 2949 - 2955
  • [4] ELECTRON-ENERGY LOSS AND X-RAY ABSORPTION-SPECTROSCOPY OF RUTILE AND ANATASE - A TEST OF STRUCTURAL SENSITIVITY
    BRYDSON, R
    SAUER, H
    ENGEL, W
    THOMAS, JM
    ZEITLER, E
    KOSUGI, N
    KURODA, H
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (04) : 797 - 812
  • [5] THE CRYSTAL-STRUCTURES OF THE LITHIUM-INSERTED METAL-OXIDES LI0.5TIO2 ANATASE, LITI2O4 SPINEL, AND LI2TI2O4
    CAVA, RJ
    MURPHY, DW
    ZAHURAK, S
    SANTORO, A
    ROTH, RS
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1984, 53 (01) : 64 - 75
  • [6] Ernst R.R., 1994, PRINCIPLES NUCL MAGN
  • [7] Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges
    Ganduglia-Pirovano, M. Veronica
    Hofmann, Alexander
    Sauer, Joachim
    [J]. SURFACE SCIENCE REPORTS, 2007, 62 (06) : 219 - 270
  • [8] Lithium diffusion in rutile structured titania
    Gligor, F.
    de Leeuw, S. W.
    [J]. SOLID STATE IONICS, 2006, 177 (26-32) : 2741 - 2746
  • [9] STUDY OF THE K EDGES OF 3D TRANSITION-METALS IN PURE AND OXIDE FORM BY X-RAY-ABSORPTION SPECTROSCOPY
    GRUNES, LA
    [J]. PHYSICAL REVIEW B, 1983, 27 (04): : 2111 - 2131
  • [10] Electrochemical and photoelectrochemical investigation of single-crystal anatase
    Kavan, L
    Gratzel, M
    Gilbert, SE
    Klemenz, C
    Scheel, HJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (28) : 6716 - 6723