Star-Shaped Fused-Ring Electron Acceptors with a C3h-Symmetric and Electron-Rich Benzotri(cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells

被引:25
作者
Wu, Xiaofu [1 ]
Wang, Weijie [1 ,2 ]
Hang, Hao [1 ,3 ]
Li, Hua [1 ,2 ]
Chen, Yonghong [1 ,3 ]
Xu, Qian [4 ]
Tong, Hui [1 ,2 ]
Wang, Lixiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[4] Changchun Univ Sci & Technol, Sch Chem & Environm Engn, Changchun 130022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
star-shaped fused-ring electron acceptors; nonfullerene organic solar cells; benzotri(cyclopentadithiophene); C-3h-symmetry; donor-acceptor; NON-FULLERENE ACCEPTORS; PERYLENE DIIMIDE; TRUXENE CORE; PERFORMANCE; BENZOTRITHIOPHENE; CONJUGATION; ENABLES; VOLTAGE; ENERGY;
D O I
10.1021/acsami.9b08017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Classical fused-ring electron acceptors (FREAs) with a linear acceptor-donor-acceptor (A-D-A) architecture continuously break records of power conversion efficiency (PCE) in nonfullerene organic solar cells. In contrast, the development of star-shaped FREAs still lags behind. Herein, a new C 3h -symmetric and electron-rich core, benzotri(cyclopentadithiophene) (BTCDT) in which the central benzo[1,2-b:3,4-b':5,6-b '']trithiophene fused with three outer thiophenes via three cyclopentadienyl rings, is synthesized and used for the construction of star-shaped FREAs (BTCDT-IC and BTCDT-ICE). Owing to the strong electron-donating ability of the BTCDT unit, both acceptors exhibit the effective intramolecular charge transfer, leading to the strong absorption in the region of 500-800 nm with narrow band gaps below 1.70 eV as well as suitable highest occupied molecular orbital and lowest unoccupied molecular orbital levels. Compared with nonfluorinated BTCDT-IC, fluorinated BTCDT-ICF red-shifts the absorption peak to 688 nm and reduces the band gap to 1.62 eV, which induces a broader external quantum efficiency (EQE) response ranging from 300 to 800 nm and a higher maximum EQE of 70% while blending with a wide band gap polymer donor J61. The J61:the BTCDT-ICF blend film exhibits more suitable phase morphology compared with the J61:BTCDT-IC blend film, which is responsible for the enhanced EQE value, increased short-circuit current density (J(sc)), and fill factor (FF) in organic solar cell devices. As a result, the J61:BTCDT-ICF-based device yields a best PCE of 8.11% with a high J(sc) of 16.93 mA cm(-2) and a high FF of 65.6%, demonstrating that the BTCDT-based star-shaped FREAs hold great potential for nonfullerene organic solar cells.
引用
收藏
页码:28115 / 28124
页数:10
相关论文
共 68 条
[1]  
[Anonymous], 2018, ADV MATER, DOI DOI 10.1002/ADMA.201706571
[2]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[3]   Organic Electronics: Does a Plot of the HOMO LUMO Wave Functions Provide Useful Information? [J].
Bredas, Jean-Luc .
CHEMISTRY OF MATERIALS, 2017, 29 (02) :477-478
[4]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[5]   Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells [J].
Cowan, Sarah R. ;
Banerji, Natalie ;
Leong, Wei Lin ;
Heeger, Alan J. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (06) :1116-1128
[6]   Organic Solar Cells with an Efficiency Approaching 15% [J].
Cui, Yong ;
Yao, Hui-feng ;
Yang, Chen-yi ;
Zhang, Shao-qing ;
Hou, Jian-hui .
ACTA POLYMERICA SINICA, 2018, (02) :223-230
[7]   Effect of Core Size on Performance of Fused-Ring Electron Acceptors [J].
Dai, Shuixing ;
Xiao, Yiqun ;
Xue, Peirao ;
Rech, Jeromy James ;
Liu, Kuan ;
Li, Zeyuan ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
CHEMISTRY OF MATERIALS, 2018, 30 (15) :5390-5396
[8]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[9]   Achieving over 16% efficiency for single-junction organic solar cells [J].
Fan, Baobing ;
Zhang, Difei ;
Li, Meijing ;
Zhong, Wenkai ;
Zeng, Zhaomiyi ;
Ying, Lei ;
Huang, Fei ;
Cao, Yong .
SCIENCE CHINA-CHEMISTRY, 2019, 62 (06) :746-752
[10]   Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells [J].
Fu, Huiting ;
Wang, Zhaohui ;
Sun, Yanming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (14) :4442-4453