Suppression of bursting

被引:10
作者
Coller, BD
Holmes, P
机构
[1] PRINCETON UNIV,DEPT MECH & AEROSP ENGN,PRINCETON,NJ 08544
[2] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
[3] CORNELL UNIV,DEPT THEORET & APPL MECH,ITHACA,NY 14853
关键词
bilinear systems; dynamical systems; heteroclinic cycles; normal forms; optimal control; symmetry;
D O I
10.1016/S0005-1098(96)00137-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the possibility of using a single small amplitude control input and feedback to stabilize equilibrium sets in a class of highly nonlinear O(2) symmetric dynamical systems possessing structurally stable heteroclinic cycles. The leading-order behavior near the equilibria is bilinear and homogeneous in the state variables, while nonlinearities representing the symmetry breaking effect of the controller are crucial. After a series of simplifying transformations, we use ideas from optimal control theory to construct a stabilizing controller. This study is motivated by the desire to stabilize the burst/sweep cycle in low-dimensional models of a turbulent boundary layer. In the last two sections, we apply the techniques to the 10-dimensional system of Aubry ct al (1988) [Aubry, N., Holmes, P., Lumley, J. L. and Stone, E. (1988) The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 192, 115-173.]. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2018, Mathematical Theory of Optimal Processes
[2]   HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
PHYSICA D, 1988, 29 (03) :257-282
[3]   KURAMOTO-SIVASHINSKY DYNAMICS ON THE CENTER-UNSTABLE MANIFOLD [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :676-691
[4]  
Arnol'd VI, 1983, GEOMETRICAL METHODS
[5]   THE DYNAMICS OF COHERENT STRUCTURES IN THE WALL REGION OF A TURBULENT BOUNDARY-LAYER [J].
AUBRY, N ;
HOLMES, P ;
LUMLEY, JL ;
STONE, E .
JOURNAL OF FLUID MECHANICS, 1988, 192 :115-173
[6]  
BLOCH AM, 1989, THEOR COMP FLUID DYN, V1, P179
[7]   BIFURCATION FROM O(2) SYMMETRICAL HETEROCLINIC CYCLES WITH 3 INTERACTING MODES [J].
CAMPBELL, SA ;
HOLMES, P .
NONLINEARITY, 1991, 4 (03) :697-726
[8]   Heteroclinic cycles and modulated travelling waves in a system with D4 symmetry [J].
Campbell, S.A. ;
Holmes, P. .
Physica D: Nonlinear Phenomena, 1992, 59 (1-3)
[9]   CONTROL OF NOISY HETEROCLINIC CYCLES [J].
COLLER, BD ;
HOLMES, P ;
LUMLEY, JL .
PHYSICA D, 1994, 72 (1-2) :135-160
[10]   INTERACTION OF ADJACENT BURSTS IN THE WALL REGION [J].
COLLER, BD ;
HOLMES, P ;
LUMLEY, JL .
PHYSICS OF FLUIDS, 1994, 6 (02) :954-962