Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase:: cloning, expression and binding studies

被引:90
作者
Abou Hachem, M
Karlsson, EN
Bartonek-Roxå, E
Raghothama, S
Simpson, PJ
Gilbert, HJ
Williamson, MP
Holst, O
机构
[1] Lund Univ, Dept Biotechnol, Dept Chem & Chem Engn, SE-22100 Lund, Sweden
[2] Univ Sheffield, Krebs Inst, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[3] Newcastle Univ, Dept Biol & Nutr Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
CBD; hemicellulose binding; modular proteins; Xyn10A;
D O I
10.1042/0264-6021:3450053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by;xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography, Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline cellulose. Binding to insoluble substrates was significantly enhanced by the presence of Na+ and Ca2+ ions. The binding affinities for soluble polysaccharides were tested by affinity electrophoresis; strong binding occurred with different xylans and beta-glucan, CBM4-2 displayed a somewhat higher binding affinity than CBM4-1 for both soluble and insoluble substrates but both had similar specificities. Binding to short oligosaccharides was measured by NMR; both modules bound with similar affinities. The binding of the modules was shown to be dominated by enthalpic forces. The binding modules did not contribute with any significant synergistic effects on xylan hydrolysis when incubated with a Xyn10A catalytic module. This is the first report of family 4 CBMs with affinity for both insoluble xylan and amorphous cellulose.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 41 条
[1]  
ALFREDSSON GA, 1988, J GEN MICROBIOL, V134, P299
[2]   Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Theodorou, MK ;
Morris, P ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1996, 319 :515-520
[3]   A MODULAR XYLANASE CONTAINING A NOVEL NONCATALYTIC XYLAN-SPECIFIC BINDING DOMAIN [J].
BLACK, GW ;
HAZLEWOOD, GP ;
MILLWARDSADLER, SJ ;
LAURIE, JI ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1995, 307 :191-195
[4]   Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Ferreira, LMA ;
Bolam, DN ;
Gilbert, HJ .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :59-69
[5]   Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity [J].
Bolam, DN ;
Ciruela, A ;
McQueen-Mason, S ;
Simpson, P ;
Williamson, MP ;
Rixon, JE ;
Boraston, A ;
Hazlewood, GP ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1998, 331 :775-781
[6]  
COUTINHO JB, 1993, FEMS MICROBIOL LETT, V113, P211, DOI 10.1016/0378-1097(93)90271-3
[7]   Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven [J].
Creagh, AL ;
Ong, E ;
Jervis, E ;
Kilburn, DG ;
Haynes, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12229-12234
[8]   C-1-C-X REVISITED - INTRAMOLECULAR SYNERGISM IN A CELLULASE [J].
DIN, N ;
DAMUDE, HG ;
GILKES, NR ;
MILLER, RC ;
WARREN, RAJ ;
KILBURN, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11383-11387
[9]   BACTERIAL CELLULASES AND XYLANASES [J].
GILBERT, HJ ;
HAZLEWOOD, GP .
JOURNAL OF GENERAL MICROBIOLOGY, 1993, 139 :187-194
[10]   DOMAINS IN MICROBIAL BETA-1,4-GLYCANASES - SEQUENCE CONSERVATION, FUNCTION, AND ENZYME FAMILIES [J].
GILKES, NR ;
HENRISSAT, B ;
KILBURN, DG ;
MILLER, RC ;
WARREN, RAJ .
MICROBIOLOGICAL REVIEWS, 1991, 55 (02) :303-315