Model selection based on minimum description length

被引:112
作者
Grünwald, P [1 ]
机构
[1] CWI, Amsterdam, Netherlands
关键词
D O I
10.1006/jmps.1999.1280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the minimum description length (MDL) principle. a general principle for inductive inference based on the idea that regularities (laws) underlying data can always be used to compress data. We introduce the fundamental concept of MDL, called the stochastic complexity, and we show how it can be used for model selection. We briefly compare MDL-based model selection to other approaches and we informally explain why we may expect MDL to give good results in practical applications. (C) 2000 Academic Press.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 31 条
[1]  
[Anonymous], THESIS U AMSTERDAM
[2]  
[Anonymous], NONPARAMETRIC FUNCTI
[3]   MINIMUM COMPLEXITY DENSITY-ESTIMATION [J].
BARRON, AR ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1034-1054
[4]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[6]   Cross-validation methods [J].
Browne, MW .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) :108-132
[8]   Reconciling simplicity and likelihood principles in perceptual organization [J].
Chater, N .
PSYCHOLOGICAL REVIEW, 1996, 103 (03) :566-581
[9]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[10]  
Dawid A. P., 1992, Bayesian Statistics, V4, P109