Protein kinase C-α overexpression stimulates Akt activity and suppresses apoptosis induced by interleukin 3 withdrawal

被引:94
作者
Li, WQ
Zhang, JC
Flechner, L
Hyun, T
Yam, A
Franke, TF
Pierce, JH
机构
[1] NCI, Cellular & Mol Biol Lab, Bethesda, MD 20892 USA
[2] Columbia Univ, Dept Pharmacol, New York, NY 10032 USA
关键词
apoptosis; Akt/protein kinase B; protein; kinase C-alpha;
D O I
10.1038/sj.onc.1203065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To investigate the role of protein kinase C (PKC) in apoptotic signaling induced by cytokine withdrawal, we expressed PKC-alpha, -delta and -epsilon individually in the 32D myeloid progenitor cells. The parental and PKC-delta- and PKC-epsilon- transfected 32D cells underwent apoptosis within 24 h in the absence of interleukin 3. In contrast, expression of PKC-alpha inhibited the onset of apoptosis as determined by genomic DNA fragmentation and flow cytometric analysis. Correlating with the inhibition of apoptosis, PKC-alpha transfectants exhibited increased activity of the endogenous Akt serine/threonine kinase. Furthermore, PKC-alpha, but not PKC-delta or -epsilon, specifically activated overexpressed Akt. PKC-alpha-induced Akt activity was partially dependent on phosphoinositol 3' kinase (PI 3'K) since a PI 3'K inhibitor was able to suppress PKC-alpha-induced Akt activation. Both basal and interleukin 3-stimulated phosphorylation of Akt on serine 473 was enhanced in the PKC-alpha and Akt contransfectants. Coexpression of wild type Akt and PKC-alpha resulted in greater suppression of apoptosis than PKC-alpha expression alone. Together, our results demonstrate that suppression of apoptosis by PKC-alpha correlates with its ability of activating endogenous Akt. Furthermore, activation of overexpressed Akt by PKC-alpha is consistent with their synergistic effect on suppressing apoptosis, providing the strong evidence of cross talk between Akt and PKC-alpha.
引用
收藏
页码:6564 / 6572
页数:9
相关论文
共 45 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[4]  
Barr LF, 1997, CELL GROWTH DIFFER, V8, P381
[5]   A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION [J].
BELLACOSA, A ;
TESTA, JR ;
STAAL, SP ;
TSICHLIS, PN .
SCIENCE, 1991, 254 (5029) :274-277
[6]   Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade [J].
Berra, E ;
Municio, MM ;
Sanz, L ;
Frutos, S ;
DiazMeco, MT ;
Moscat, J .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4346-4354
[7]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[8]   REGULATION OF LYMPHOCYTE SURVIVAL BY THE BCL-2 GENE FAMILY [J].
CORY, S .
ANNUAL REVIEW OF IMMUNOLOGY, 1995, 13 :513-543
[9]  
DATTA K, 1995, MOL CELL BIOL, V15, P2304
[10]   Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis [J].
Datta, R ;
Kojima, H ;
Yoshida, K ;
Kufe, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20317-20320