Renormalization of quantum gravity coupled with matter in three dimensions

被引:12
作者
Anselmi, D [1 ]
机构
[1] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy
[2] Ist Nazl Fis Nucl, Pisa, Italy
关键词
D O I
10.1016/j.nuclphysb.2004.03.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In three spacetime dimensions, where no graviton propagates, pure gravity is known to be finite. It is natural to inquire whether finiteness survives the coupling with matter. Standard arguments ensure that there exists a subtraction scheme where no Lorentz-Chern-Simons term is generated by radiative corrections, but are not sufficiently powerful to ensure finiteness. Therefore, it is necessary to perform an explicit (two-loop) computation in a specific model. I consider quantum gravity coupled with Chem-Simons U(1) gauge theory and massless fermions and show that renormalization originates four-fermion divergent vertices at the second loop order. I conclude that quantum gravity coupled with matter, as it stands, is not finite in three spacetime dimensions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 24 条
[1]   3d Lorentzian, dynamically triangulated quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :980-982
[3]  
Anselmi D, 2000, J HIGH ENERGY PHYS
[4]   RENORMALIZATIONS IN SUPERSYMMETRIC AND NONSUPERSYMMETRIC NON-ABELIAN CHERN-SIMONS FIELD-THEORIES WITH MATTER [J].
AVDEEV, LV ;
KAZAKOV, DI ;
KONDRASHUK, IN .
NUCLEAR PHYSICS B, 1993, 391 (1-2) :333-357
[5]   RENORMALIZATIONS IN ABELIAN CHERN-SIMONS FIELD-THEORIES WITH MATTER [J].
AVDEEV, LV ;
GRIGORYEV, GV ;
KAZAKOV, DI .
NUCLEAR PHYSICS B, 1992, 382 (03) :561-580
[6]   NONRENORMALIZATION PROPERTIES OF THE CHERN-SIMONS ACTION COUPLED TO MATTER [J].
BLASI, A ;
MAGGIORE, N ;
SORELLA, SP .
PHYSICS LETTERS B, 1992, 285 (1-2) :54-60
[7]   GRAVITATING TOPOLOGICAL MATTER IN 2 + 1 DIMENSIONS [J].
CARLIP, S ;
GEGENBERG, J .
PHYSICAL REVIEW D, 1991, 44 (02) :424-428
[8]  
CARLIP S, 1998, QUANTUM GRAVITY 2 1
[9]   INTEGRATION BY PARTS - THE ALGORITHM TO CALCULATE BETA-FUNCTIONS IN 4-LOOPS [J].
CHETYRKIN, KG ;
TKACHOV, FV .
NUCLEAR PHYSICS B, 1981, 192 (01) :159-204
[10]  
Collins J., 1984, RENORMALIZATION, P34, DOI 10.1017/CBO9780511622656