MCMC exploration of supermassive black hole binary inspirals

被引:37
作者
Cornish, Neil J. [1 ]
Porter, Edward K. [1 ]
机构
[1] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
关键词
D O I
10.1088/0264-9381/23/19/S15
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of super massive black hole binaries (SMBHBs) anywhere in the universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.
引用
收藏
页码:S761 / S767
页数:7
相关论文
共 22 条
[1]  
Bender P, 1998, LISA Pre Phase A Report, V2nd
[2]   Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA [J].
Berti, E ;
Cardoso, V ;
Will, CM .
PHYSICAL REVIEW D, 2006, 73 (06)
[3]   Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order [J].
Blanchet, L ;
Iyer, BR ;
Will, CM ;
Wiseman, AG .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (04) :575-584
[4]   Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data [J].
Christensen, N ;
Dupuis, RJ ;
Woan, G ;
Meyer, R .
PHYSICAL REVIEW D, 2004, 70 (02) :022001-1
[5]   A Metropolis-Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data [J].
Christensen, N ;
Meyer, R ;
Libson, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (01) :317-330
[6]   LISA data analysis using Markov chain Monte Carlo methods [J].
Cornish, NJ ;
Crowder, J .
PHYSICAL REVIEW D, 2005, 72 (04) :1-15
[7]   LISA data analysis: Source identification and subtraction [J].
Cornish, NJ ;
Larson, SL .
PHYSICAL REVIEW D, 2003, 67 (10)
[8]   LISA response function [J].
Cornish, NJ ;
Rubbo, LJ .
PHYSICAL REVIEW D, 2003, 67 (02)
[9]  
CORNISH NJ, 2006, GRQC0605135
[10]   LISA data analysis using genetic algorithms [J].
Crowder, J ;
Cornish, NJ ;
Reddinger, JL .
PHYSICAL REVIEW D, 2006, 73 (06)