Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum

被引:95
作者
Asakura, Yoko
Kimura, Eiichiro
Usuda, Yoshihiro
Kawahara, Yoshio
Matsui, Kazuhiko
Osumi, Tsuyoshi
Nakamatsu, Tsuyoshi
机构
[1] Ajinomoto Co Inc, Kawasaki Ku, Kawasaki, Kanagawa 2108681, Japan
[2] Tokyo Denki Univ, Dept Environm Mat Sci, Chiyoda Ku, Tokyo 1018457, Japan
关键词
D O I
10.1128/AEM.01867-06
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
L-Glutamate overproduction in Corynebacterium glutamicum, a biotin auxotroph, is induced by biotin limitation or by treatment with certain fatty acid ester surfactants or with penicillin. We have analyzed the relationship between the inductions, 2-oxoglutarate dehydrogenase complex (ODHC) activity, and L-glutamate production. Here we show that a strain deleted for odhA and completely lacking ODHC activity produces L-glutamate as efficiently as the induced wild type (27.8 mmol/g [dry weight] of cells for the ohd4 deletion strain compared with only 1.0 mmol/g [dry weight] of cells for the uninduced wild type). This level of production is achieved without any induction or alteration in the fatty acid composition of the cells, showing that L-glutamate overproduction can be caused by the change in metabolic flux alone. Interestingly, the L-glutamate productivity of the odhA-deleted strain is increased about 10% by each of the L-glutamate-producing inductions, showing that the change in metabolic flux resulting from the odhA deletion and the inductions have additive effects on L-glutamate overproduction. Tween 40 was indicated to induce drastic metabolic change leading to L-glutamate overproduction in the odhA-deleted strain. Furthermore, optimizing the metabolic flux from 2-oxoglutarate to L-glutamate by tuning glutamate dehydrogenase activity increased the L-glutamate production of the odhA-deleted strain.
引用
收藏
页码:1308 / 1319
页数:12
相关论文
共 40 条
[1]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[2]   MOLECULAR ANALYSIS OF THE CORYNEBACTERIUM-GLUTAMICUM GDH GENE ENCODING GLUTAMATE-DEHYDROGENASE [J].
BORMANN, ER ;
EIKMANNS, BJ ;
SAHM, H .
MOLECULAR MICROBIOLOGY, 1992, 6 (03) :317-326
[3]   Massive gene decay in the leprosy bacillus [J].
Cole, ST ;
Eiglmeier, K ;
Parkhill, J ;
James, KD ;
Thomson, NR ;
Wheeler, PR ;
Honoré, N ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Mungall, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, RM ;
Devlin, K ;
Duthoy, S ;
Feltwell, T ;
Fraser, A ;
Hamlin, N ;
Holroyd, S ;
Hornsby, T ;
Jagels, K ;
Lacroix, C ;
Maclean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Quail, MA ;
Rajandream, MA ;
Rutherford, KM ;
Rutter, S ;
Seeger, K ;
Simon, S ;
Simmonds, M ;
Skelton, J ;
Squares, R ;
Squares, S ;
Stevens, K ;
Taylor, K ;
Whitehead, S ;
Woodward, JR ;
Barrell, BG .
NATURE, 2001, 409 (6823) :1007-1011
[4]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[5]  
DAVIS BD, 1959, FED PROC, V18, P211
[6]   Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum [J].
Delaunay, S ;
Daran-Lapujade, P ;
Engasser, JM ;
Goergen, JL .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2004, 31 (04) :183-188
[7]   EXCRETION OF GLUTAMATE FROM CORYNEBACTERIUM-GLUTAMICUM TRIGGERED BY AMINE SURFACTANTS [J].
DUPERRAY, F ;
JEZEQUEL, D ;
GHAZI, A ;
LETELLIER, L ;
SHECHTER, E .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1103 (02) :250-258
[8]  
Eggeling L, 2001, J MOL MICROB BIOTECH, V3, P67
[9]   Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis [J].
Gande, R ;
Gibson, KJC ;
Brown, AK ;
Krumbach, K ;
Dover, LG ;
Sahm, H ;
Shioyama, S ;
Oikawa, T ;
Besra, GS ;
Eggeling, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :44847-44857
[10]   CARRIER-MEDIATED GLUTAMATE SECRETION BY CORYNEBACTERIUM-GLUTAMICUM UNDER BIOTIN LIMITATION [J].
GUTMANN, M ;
HOISCHEN, C ;
KRAMER, R .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1112 (01) :115-123