The particle swarm optimization algorithm in size and shape optimization

被引:366
作者
Fourie, PC
Groenwold, AA
机构
[1] Technikon Pretoria, Dept Mech Engn, ZA-0001 Pretoria, South Africa
[2] Univ Pretoria, Dept Mech Engn, ZA-0002 Pretoria, South Africa
关键词
particle swarm optimization; size optimization; shape optimization;
D O I
10.1007/s00158-002-0188-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape and size optimization problems instructural design are addressed using the particle swarm optimization algorithm (PSOA). In our implementation of the PSOA, the social behaviour of birds is mimicked. Individual birds exchange information about their position, velocity and fitness, and the behaviour of the flock is then influenced to increase the probability of migration to regions of high fitness. New operators in the PSOA, namely the elite velocity and the elite particle, are introduced. Standard size and shape design problems selected from literature are used to evaluate the performance of the PSOA, The performance of the PSOA is compared with that of three gradient based methods, as well as the genetic algorithm (GA). In attaining the approximate region of the optimum, our implementation suggests that the PSOA is superior to the GA, and comparable to gradient based algorithms.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 27 条