The RAD6/BRE1 histone modification pathway in saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18

被引:53
作者
Game, John C.
Williamson, Marsha S.
Spicakova, Tatiana
Brown, J. Martin
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA
[2] Stanford Univ, Sch Med, Dept Radiat Oncol, Stanford, CA 94305 USA
关键词
D O I
10.1534/genetics.106.057794
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We examine ionizing radiation (IR) sensitivity and epistasis relationships of several Saccharomyces mutants affecting post-translational modifications of histones H2B and H3. Mutants bre1 Delta, Ige1 Delta, and rtf1 Delta, defective in histone H2B lysine 123 ubiquitination, show IR sensitivity equivalent to that of the dot1 Delta mutant that we reported on earlier, consistent with published findings that Dot1p requires H2B K123 ubiquitination to fully methylate histone H3 K79. This implicates progressive K79 methylation rather than mono-methylation in IR resistance. The set2 Delta mutant, defective in H3 K36 methylation, shows mild IR sensitivity whereas mutants that abolish H3 K4 methylation resemble wild type. The dot1 Delta, bre1 Delta, and lge1 Delta mutants show epistasis for IR sensitivity. The paf1 Delta mutant, also reportedly defective in H2B K123 ubiquitination, confers no sensitivity. The rad6 Delta, rad51null, rad50 Delta, and rad9 Delta mutations are epistatic to bre1 Delta and dot1 Delta, but rad18 Delta and rad5 Delta show additivity with bre1 Delta, dot1 Delta, and each other. The bre1 Delta rad18 Delta double mutant resembles rad6 Delta in sensitivity; thus the role of Rad6p in ubiquitinating H2B accounts for its extra sensitivity compared to rad18 Delta. We conclude that IR resistance conferred by BRE1 and DOT1 is mediated through homologous recombinational repair, not postreplication repair, and confirm findings of a G(1) checkpoint role for the RAD6/BRE1/DOT1 pathway.
引用
收藏
页码:1951 / 1968
页数:18
相关论文
共 84 条
[1]   Boundaries and physical characterization of a new domain shared between mammalian 53BP1 and yeast Rad9 checkpoint proteins [J].
Alpha-Bazin, B ;
Lorphelin, A ;
Nozeran, N ;
Charier, G ;
Marchetti, C ;
Bérenguer, F ;
Couprie, J ;
Gilquin, B ;
Zinn-Justin, S ;
Quéméneur, E .
PROTEIN SCIENCE, 2005, 14 (07) :1827-1839
[2]  
[Anonymous], 1983, Yeast Genetics: Fundamental and Applied Aspects
[3]   DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints [J].
Bashkirov, VI ;
King, JS ;
Bashkirova, EV ;
Schmuckli-Maurer, J ;
Heyer, WD .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (12) :4393-4404
[4]   A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity [J].
Birrell, GW ;
Giaever, G ;
Chu, AM ;
Davis, RW ;
Brown, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12608-12613
[5]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[6]  
Brachmann CB, 1998, YEAST, V14, P115
[7]  
Bressan DA, 1999, MOL CELL BIOL, V19, P7681
[8]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498
[9]   DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae [J].
Broomfield, S ;
Hryciw, T ;
Xiao, W .
MUTATION RESEARCH-DNA REPAIR, 2001, 486 (03) :167-184
[10]   Global analysis of gene function in yeast by quantitative phenotypic profiling [J].
Brown, James A. ;
Sherlock, Gavin ;
Myers, Chad L. ;
Burrows, Nicola M. ;
Deng, Changchun ;
Wu, H. Irene ;
McCann, Kelly E. ;
Troyanskaya, Olga G. ;
Brown, J. Martin .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0001