Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes

被引:291
作者
Li, SH [1 ]
Li, HJ [1 ]
Wang, XB [1 ]
Song, YL [1 ]
Liu, YQ [1 ]
Jiang, L [1 ]
Zhu, DB [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Ctr Mol Sci, Beijing 100080, Peoples R China
关键词
D O I
10.1021/jp0209401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Honeycomb-like aligned carbon nanotube films were grown by pyrolysis of iron phthalocyanine. The patterned structure was characterized by a scanning electron micrograph (SEM) and an atomic force micrograph (AFM). Wettability studies revealed the film surface showed a super-hydrophobic property with much higher contact angle (163.4 +/- 1.4degrees) and lower sliding angle (less than 5degrees)-a water droplet moved easily on the surface. In contrast to a densely packed aligned carbon nanotube, the sliding feature was strongly affected by microstructure of surface.
引用
收藏
页码:9274 / 9276
页数:3
相关论文
共 36 条
[1]   MANIPULATION OF THE WETTABILITY OF SURFACES ON THE 0.1-MICROMETER TO 1-MICROMETER SCALE THROUGH MICROMACHINING AND MOLECULAR SELF-ASSEMBLY [J].
ABBOTT, NL ;
FOLKERS, JP ;
WHITESIDES, GM .
SCIENCE, 1992, 257 (5075) :1380-1382
[2]  
Adamson A.W., 1997, PHYSICAL CHEM SURFAC, P365
[3]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[4]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[5]   Plasma activation of carbon nanotubes for chemical modification [J].
Chen, QD ;
Dai, LM ;
Gao, M ;
Huang, SM ;
Mau, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (03) :618-622
[6]   Ultrahydrophobic and ultralyophobic surfaces:: Some comments and examples [J].
Chen, W ;
Fadeev, AY ;
Hsieh, MC ;
Öner, D ;
Youngblood, J ;
McCarthy, TJ .
LANGMUIR, 1999, 15 (10) :3395-3399
[7]   Controlled chemical routes to nanotube architectures, physics, and devices [J].
Dai, HJ ;
Kong, J ;
Zhou, CW ;
Franklin, N ;
Tombler, T ;
Cassell, A ;
Fan, SS ;
Chapline, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (51) :11246-11255
[8]  
Dai LM, 2001, ADV MATER, V13, P899, DOI 10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO
[9]  
2-G
[10]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781