Applications to risk theory of a Monte Carlo multiple integration method

被引:15
作者
Usábel, MA [1 ]
机构
[1] Univ Complutense Madrid, Madrid, Spain
关键词
Monte Carlo multiple integration; variance reduction; convolutions; ruin probability;
D O I
10.1016/S0167-6687(98)00026-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
Evaluation of multiple integrals is a commonly encountered problem in risk theory, specially in ruin probability. Using Monte Carlo simulation we obtain an unbiased and consistent point estimator, and also confidence intervals as approximations of a special case of multiple integral frequently used in risk theory. The variance reduction achieved compared to straight simulation and some specific properties make this approach interesting when approximating ruin probabilities. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1996, Monte Carlo Concepts, Algorithms and Applications
[2]  
BAKHVALOV NS, 1959, VESTNIK MOSK MMAFH, V4
[3]  
Bratley P., 1987, Guide to Simulation
[4]  
Buhlmann H., 1970, Mathematical methods in risk theory
[5]  
Burden R. L., 1985, Numerical Analysis
[6]   RECURSIVE CALCULATION OF FINITE-TIME RUIN PROBABILITIES [J].
DEVYLDER, F ;
GOOVAERTS, MJ .
INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (01) :1-7
[7]   NUMERICAL EVALUATION OF MULTIPLE INTEGRALS [J].
HABER, S .
SIAM REVIEW, 1970, 12 (04) :481-&
[8]   QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS [J].
NIEDERREITER, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :957-1041
[9]  
NIEDERRETIER H, 1992, RANDOM NUMBER GENERA
[10]  
Panjer H.H., 1981, ASTIN Bulletin, V12, P22, DOI DOI 10.1017/S0515036100006796