Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids

被引:70
作者
Kartalov, Emil P.
Walker, Christopher
Taylor, Clive R.
Anderson, W. French
Scherer, Axel
机构
[1] Univ So Calif, Dept Biochem & Mol Biol, Keck Sch Med, Los Angeles, CA 90033 USA
[2] Univ So Calif, Norris Canc Ctr, Los Angeles, CA 90033 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[4] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[5] Univ So Calif, Dept Pathol, Keck Sch Med, Los Angeles, CA 90033 USA
关键词
autoregulation; microelectromechanical devices; polydimethylsiloxane; array; logic;
D O I
10.1073/pnas.0602890103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on a fundamental technological advance for multilayer polydimethylsiloxane (PDMS) microfluidics. Vertical passages (vias), connecting channels located in different layers, are fabricated monolithically, in parallel, by simple and easy means. The resulting 3D connectivity greatly expands the potential complexity of microfluidic architecture. We apply the vias to printing nested bioarrays and building autoregulatory devices. A current source is demonstrated, while a diode and a rectifier are derived; all are building blocks for analog circuitry in Newtonian fluids. We also describe microfluidic septa and their applications. Vias lay the foundation for a new generation of microfluidic devices.
引用
收藏
页码:12280 / 12284
页数:5
相关论文
共 28 条
[1]   Polydimethylsiloxane based microfluidic diode [J].
Adams, ML ;
Johnston, ML ;
Scherer, A ;
Quake, SR .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (08) :1517-1521
[2]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[3]   Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J].
Balagaddé, FK ;
You, LC ;
Hansen, CL ;
Arnold, FH ;
Quake, SR .
SCIENCE, 2005, 309 (5731) :137-140
[4]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[5]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[6]  
Feynman R., 1993, Journal of Microelectromechanical Systems, V2, P4, DOI 10.1109/84.232589
[7]  
Feynman R. P., 1960, ENG SCI, V23, P32, DOI [10.1109/84.128057, DOI 10.1109/84.128057]
[8]   A microfluidic rectifier: Anisotropic flow resistance at low Reynolds numbers [J].
Groisman, A ;
Quake, SR .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :094501-1
[9]   Microfluidic memory and control devices [J].
Groisman, A ;
Enzelberger, M ;
Quake, SR .
SCIENCE, 2003, 300 (5621) :955-958
[10]   A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion [J].
Hansen, CL ;
Skordalakes, E ;
Berger, JM ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16531-16536