Introducing an implicit membrane in generalized Born/solvent accessibility continuum solvent models

被引:140
作者
Spassov, VZ [1 ]
Yan, L [1 ]
Szalma, S [1 ]
机构
[1] Accelrys Inc, San Diego, CA 92121 USA
关键词
D O I
10.1021/jp020674r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new empirical approach to model the solvent effects in protein-membrane complexes is proposed. The generalized Born (GB) approximation is extended by including an implicit membrane (INI) in the calculation of the electrostatic contribution to the solvation free energy (GB/IM model). In addition, nonpolar solvation energy terms are calculated on the basis of the solvent-accessible surface approximation including the effect of membrane (SA/IM model). The generalized Born - solvent-accessible surface area (GBSA) model with implicit membrane (GBSA/IM) is implemented in the CHARMm package and is applicable for energy calculations and molecular dynamics simulations. The potential of the new method for studying large molecular systems is demonstrated with the example of two transmembrane proteins, bacteriorhodopsin and rhodopsin. The results show a clear directional asymmetry of the solvation energy during translocation of the proteins through the membrane, which is suggested to be an alternative explanation of the known "positive-inside" rule. The method is also tested in nanosecond molecular dynamics (MD) simulations of the influenza virus HA2 (1:20) fusion peptide. Interestingly, when starting from two different initial positions of peptide, during the 3 ns runs, the helical fragment consistently adopts a tilted (similar to20-25degrees) orientation with respect to the membrane in very close agreement with the known electron paramagnetic resonance (EPR) data. We also found an excellent agreement between the pKs of the N-terminal amino group computed for the final MD structures and the known NMR titration data.
引用
收藏
页码:8726 / 8738
页数:13
相关论文
共 55 条
[1]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[2]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[3]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[4]  
Bashford D, 1997, LECT NOTES COMPUTER, P233, DOI [DOI 10.1007/3-540-63827-X_66, 10.1007/3-540-63827-X]
[5]   Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers [J].
Bechor, D ;
Ben-Tal, N .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :643-655
[6]   Binding of small basic peptides to membranes containing acidic lipids: Theoretical models and experimental results [J].
BenTal, N ;
Honig, B ;
Peitzsch, RM ;
Denisov, G ;
McLaughlin, S .
BIOPHYSICAL JOURNAL, 1996, 71 (02) :561-575
[7]   Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane [J].
Bernèche, S ;
Nina, M ;
Roux, B .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :1603-1618
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   Comparative study of the folding free energy landscape of a three-stranded β-sheet protein with explicit and implicit solvent models [J].
Bursulaya, BD ;
Brooks, CL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12378-12383
[10]   Development of a generalized born model parametrization for proteins and nucleic acids [J].
Dominy, BN ;
Brooks, CL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (18) :3765-3773