Vibrational wave functions and energy levels of large anharmonic clusters: A vibrational SCF study of (Ar)(13)

被引:74
作者
Jung, JO
Gerber, RB
机构
[1] HEBREW UNIV JERUSALEM, DEPT PHYS CHEM, IL-91904 JERUSALEM, ISRAEL
[2] HEBREW UNIV JERUSALEM, FRITZ HABER RES CTR, IL-91904 JERUSALEM, ISRAEL
关键词
D O I
10.1063/1.472876
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vibrational ground state and the fundamental excited states of (Ar)(13) were studied by vibrational self-consistent field (VSCF) calculations. These calculations treat the interaction between different modes through a mean potential approximation, and incorporate anharmonicity in full. The good accuracy of VSCF for such systems was demonstrated by test calculations for (AT)(3) and other clusters. The study of (Ar)(13) focused on the properties of the wave functions and the excitation energies, on the role of the coupling between the modes and on the deviation from the harmonic approximation. It was found that SCF excitation energies for the fundamental transitions differ from the harmonic values by about 25% for the softest modes, and by about 10% for the stiffest modes. Coupling between the modes, treated by SCF; was found to be much more important than the intrinsic anharmonicity of the individual modes. For the ground state, the harmonic wave function compares well with VSCF, but for the fundamental excited states appreciable differences were found. The results for a potential field expanded to fourth-order polynomial in the normal mode displacements are found to be valid, almost indentical with those for a more elaborate sixth-order polynomial expansion. The fundamental excitation frequencies computed using the Aziz-Slaman Ar-Ar pair potential are very similar, with some quantitative deviations, to the values obtained with a Lennard-Jones potential. The differences are larger for certain specific modes, and very small for the others. These calculations demonstrate the computational power of VSCF as a tool for quantum-mechanical calculations for large clusters, at the level of specific wave functions. (C) 1996 American Institute of Physics.
引用
收藏
页码:10682 / 10690
页数:9
相关论文
共 36 条
[1]   THE ARGON AND KRYPTON INTERATOMIC POTENTIALS REVISITED [J].
AZIZ, RA ;
SLAMAN, MJ .
MOLECULAR PHYSICS, 1986, 58 (04) :679-697
[2]   HE2CL2 AND HE3CL2 VANDERWAALS CLUSTERS - A QUANTUM MONTE-CARLO STUDY [J].
BACIC, Z ;
KENNEDYMANDZIUK, M ;
MOSKOWITZ, JW ;
SCHMIDT, KE .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (09) :6472-6480
[3]   THEORETICAL METHODS FOR ROVIBRATIONAL STATES OF FLOPPY MOLECULES [J].
BACIC, Z ;
LIGHT, JC .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1989, 40 :469-498
[4]   MOLECULES IN HELIUM CLUSTERS - SF6HEN [J].
BARNETT, RN ;
WHALEY, KB .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (12) :9730-9744
[5]   MOLLER-PLESSET THEORY FOR ATOMIC GROUND-STATE ENERGIES [J].
BINKLEY, JS ;
POPLE, JA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1975, 9 (02) :229-236
[6]   THE SELF-CONSISTENT-FIELD APPROACH TO POLYATOMIC VIBRATIONS [J].
BOWMAN, JM .
ACCOUNTS OF CHEMICAL RESEARCH, 1986, 19 (07) :202-208
[7]   SELF-CONSISTENT FIELD ENERGIES AND WAVEFUNCTIONS FOR COUPLED OSCILLATORS [J].
BOWMAN, JM .
JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (02) :608-610
[8]  
BROUDE S, IN PRESS CHEM PHYS L
[9]   TREATMENT OF RIGID BODIES BY DIFFUSION MONTE-CARLO - APPLICATION TO THE PARA-H2...H2O AND ORTHO-H2...H2O CLUSTERS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (01) :726-729
[10]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629