Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction

被引:93
作者
Kokubo, H
Miyagawa-Tomita, S
Tomimatsu, H
Nakashima, Y
Nakazawa, M
Saga, Y
Johnson, RL
机构
[1] Natl Inst Genet, Div Mammalian Dev, Mishima, Shizuoka 411, Japan
[2] Grad Sch Adv Studies, Mishima, Shizuoka, Japan
[3] Tokyo Womens Med Univ, Heart Inst Japan, Tokyo, Japan
[4] Univ Texas, MD Anderson Canc Ctr, Dept Biochem & Mol Biol, Houston, TX 77030 USA
关键词
hesr2; notch signaling pathway; echocardiography; knockout mouse; heart anomaly;
D O I
10.1161/01.RES.0000141136.85194.f0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Genes involved in the Notch signaling pathway have been shown to be critical regulators of cardiovascular development. In vitro studies have revealed that the Notch signaling pathway directly regulates transcription of hairy and enhancer of split-related (hesr) genes, encoding basic helix-loop-helix transcription factors. To assess the functional role of hesr genes in cardiovascular development, we generated mice with a targeted disruption of the hesr2 gene and used echocardiography to analyze heart function of the mutant mice. In the early postnatal period, a majority of hesr2 homozygous mice die as a result of congestive heart failure accompanied by pronounced heart enlargement. Transthoracic echocardiography on 5-day-old homozygous mice revealed tricuspid and mitral valve regurgitation and a dilated left ventricular chamber with markedly diminished fractional shortening of the left ventricle. The hemodynamic anomalies were accompanied by morphological changes, such as dysplastic atrioventricular (AV) valves, a perimembranous ventricular septal defect, and a secundum atrial septal defect. AV valve regurgitations attributable to dysplasia of the AV valves were most likely responsible for the heart dysfunction in hesr2 homozygous mice. These observations indicate that the Notch signaling target hesr2 plays an important role in the formation and function of the AV valves. In addition, hesr2 activity may be important for proper development of cardiomyocytes, thereby assuring normal left ventricular contractility. Because of the unique spectrum of cardiac anomalies expressed by hesr2-null mice, they represent a useful model system for elucidating the genetic basis of heart dysfunction.
引用
收藏
页码:540 / 547
页数:8
相关论文
共 35 条
[1]   Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis [J].
Adams, RH ;
Wilkinson, GA ;
Weiss, C ;
Diella, F ;
Gale, NW ;
Deutsch, U ;
Risau, W ;
Klein, R .
GENES & DEVELOPMENT, 1999, 13 (03) :295-306
[2]   INCREASED MYOTHERMAL ECONOMY OF ISOMETRIC FORCE GENERATION IN COMPENSATED CARDIAC-HYPERTROPHY INDUCED BY PULMONARY-ARTERY CONSTRICTION IN THE RABBIT - A CHARACTERIZATION OF HEAT LIBERATION IN NORMAL AND HYPERTROPHIED RIGHT VENTRICULAR PAPILLARY-MUSCLES [J].
ALPERT, NR ;
MULIERI, LA .
CIRCULATION RESEARCH, 1982, 50 (04) :491-500
[3]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[4]   A novel E box AT-rich element is required for muscle-specific expression of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene [J].
Baker, DL ;
Dave, V ;
Reed, T ;
Misra, S ;
Periasamy, M .
NUCLEIC ACIDS RESEARCH, 1998, 26 (04) :1092-1098
[5]   THE HEART AND THE ATRIAL NATRIURETIC FACTOR [J].
CANTIN, M ;
GENEST, J .
ENDOCRINE REVIEWS, 1985, 6 (02) :107-127
[6]  
CHIEN R, 1992, BASIC RES CARDIOL, V87, P48
[7]   Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system [J].
Chin, MT ;
Maemura, K ;
Fukumoto, S ;
Jain, MK ;
Layne, MD ;
Watanabe, M ;
Hsieh, CM ;
Lee, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6381-6387
[8]   Molecular and cellular mechanisms of myocardial failure [J].
Colucci, WS .
AMERICAN JOURNAL OF CARDIOLOGY, 1997, 80 (11A) :L15-L25
[9]   Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice [J].
Donovan, J ;
Kordylewska, A ;
Jan, YN ;
Utset, MF .
CURRENT BIOLOGY, 2002, 12 (18) :1605-1610
[10]   Genetic basis of cardiomyopathy [J].
Durand, JB .
CURRENT OPINION IN CARDIOLOGY, 1999, 14 (03) :225-229