Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds

被引:85
作者
Semelsberger, TA
Brown, LF
Borup, RL
Inbody, MA
机构
[1] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA
关键词
autothermal systems; fuel-cell feeds; automotive fuel cells; hydrogen carriers;
D O I
10.1016/S0360-3199(03)00214-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work presents thermodynamic analyses of autothermal processes using five fuels-natural gas, methanol, ethanol, dimethyl ether, and gasoline. Autothermal processes combine exothermic and endothermic reactions. The processes considered here couple endothermic steam reforming with exothermic oxidation to create hydrogen-rich fuel-cell feeds. Of the fuels treated here, methanol, ethanol, and dimethyl ether are pure compounds. Methane simulates natural gas and a mixture of 7% neopentane, 56% 2,4 dimethyl pentane, 7% cyclohexane, 30% ethyl benzene Simulates gasoline. In the computations, sufficient oxygen is fed so the energy generated by the oxidation exactly compensates the energy absorbed by the reforming reactions. The analyses calculate equilibrium product concentrations at temperatures from 300 to 1000 K, pressures from I to 5 atm, and water-fuel ratios from 1 to 9 times the stoichiometric value. The thermodynamic calculations in this work say that any of the five fuels, when processed autothermally, can give a product leading to a hydrogen-rich feed for fuel cells. The calculations also show that the oxygen-containing substances (methanol, ethanol, and dimethyl ether) require lower temperatures for effective processing than the non-oxygenated fuels (natural gas and gasoline). Lower reaction temperatures also promote products containing less carbon monoxide, a desirable effect. The presence of significant product CO mandates the choice of optimum conditions, not necessarily conditions that produce the maximum product hydrogen content. Using a simple optimum objective function shows that dimethyl ether has the greatest potential product content, followed by methanol, ethanol, gasoline, and natural gas. The calculations point the way toward rational choices of processes for producing fuel-cell feeds of the necessary quality. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy.
引用
收藏
页码:1047 / 1064
页数:18
相关论文
共 35 条
[1]  
*AIR PROD CHEM INC, 2002, DEFC2292PC90543 US D
[2]   HYDROGEN-PRODUCTION BY THE CATALYTIC STEAM REFORMING OF METHANOL .1. THE THERMODYNAMICS [J].
AMPHLETT, JC ;
EVANS, MJ ;
JONES, RA ;
MANN, RF ;
WEIR, RD .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1981, 59 (06) :720-727
[3]   HYDROGEN-PRODUCTION BY THE CATALYTIC STEAM REFORMING OF METHANOL .2. KINETICS OF METHANOL DECOMPOSITION USING GIRDLER G66B CATALYST [J].
AMPHLETT, JC ;
EVANS, MJ ;
MANN, RF ;
WEIR, RD .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1985, 63 (04) :605-611
[4]  
BORUP R, 2000, TRANSPORTATION FUEL, P49
[5]  
BORUP R, 2002, 2002 NAT LAB R D M D
[6]  
Brown L.F., 1996, LA13112MS LOS AL NAT
[7]  
Brown LF, 2001, INT J HYDROGEN ENERG, V26, P381, DOI 10.1016/S0360-3199(00)00092-6
[8]  
BROWN LF, 1996, LAUR961209 LOS AL NA
[9]  
BROWN LF, 2000, LAUR003458 LOS AL NA
[10]  
FISHTIK I, 1999, 16 M N AM CAT SOC BO