Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images

被引:72
作者
Krafft, Christoph [1 ]
Shapoval, Larysa
Sobottka, Stephan B.
Geiger, Kathrin D.
Schackert, Gabriele
Salzer, Reiner
机构
[1] Tech Univ Dresden, Inst Analyt Chem, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Univ Hosp Dresden, Clin Neurosurg, D-01307 Dresden, Germany
[3] Tech Univ Dresden, Univ Hosp Dresden, Inst Pathol, Dept Neuropathol, D-01307 Dresden, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2006年 / 1758卷 / 07期
关键词
vibrational imaging; biomedical spectroscopy; secondary brain tumors; chemometric methods; molecular pathology;
D O I
10.1016/j.bbamem.2006.05.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain metastases are secondary intracranial lesions which occur more frequently than primary brain tumors. The four most abundant types of brain metastasis originate from primary tumors of lung cancer, colorectal cancer, breast cancer and renal cell carcinoma. As metastatic cells contain the molecular information of the primary tissue cells and IR spectroscopy probes the molecular fingerprint of cells, IR spectroscopy based methods constitute a new approach to determine the origin of brain metastases. IR spectroscopic images of 4 by 4 mm 2 tissue areas were recorded in transmission mode by a FTIR imaging spectrometer coupled to a focal plane array detector. Unsupervised cluster analysis revealed variances within each cryosection. Selected clusters of five IR images with known diagnoses trained a supervised classification model based on the algorithm soft independent modeling of class analogies (SIMCA). This model was applied to distinguish normal brain tissue from brain metastases and to identify the primary tumor of brain metastases in 15 independent IR images. All specimens were assigned to the correct tissue class. This proof-of-concept study demonstrates that IR spectroscopy can complement established methods such as histopathology or immunohistochemistry for diagnosis. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:883 / 891
页数:9
相关论文
共 33 条
[1]   Classification of human gliomas by infrared imaging spectroscopy and chemometric image processing [J].
Beleites, C ;
Steiner, G ;
Sowa, MG ;
Baumgartner, R ;
Sobottka, S ;
Schackert, G ;
Salzer, R .
VIBRATIONAL SPECTROSCOPY, 2005, 38 (1-2) :143-149
[2]  
Camacho NP, 2001, BIOPOLYMERS, V62, P1, DOI 10.1002/1097-0282(2001)62:1<1::AID-BIP10>3.0.CO
[3]  
2-O
[4]   A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004) [J].
Diem, M ;
Romeo, M ;
Boydston-White, S ;
Miljkovic, M ;
Matthäus, C .
ANALYST, 2004, 129 (10) :880-885
[5]  
Dukor R.K., 2001, Handbook of Vibrational Spectroscopy, DOI [DOI 10.1002/0470027320.S8107, 10.1002/0470027320.s8107]
[6]   Mid-IR microspectroscopic Imaging of breast tumor tissue sections [J].
Fabian, H ;
Lasch, P ;
Boese, M ;
Haensch, W .
BIOPOLYMERS, 2002, 67 (4-5) :354-357
[7]   Infrared spectroscopic imaging for histopathologic recognition [J].
Fernandez, DC ;
Bhargava, R ;
Hewitt, SM ;
Levin, IW .
NATURE BIOTECHNOLOGY, 2005, 23 (04) :469-474
[8]   Classification of chondroitin sulfate A, chondroitin sulfate C, glucosarnine hydrochloride and glucosamine 6 sulfate using chernometric techniques [J].
Foot, M ;
Mulholland, M .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2005, 38 (03) :397-407
[9]   Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy [J].
Kidder, LH ;
Kalasinsky, VF ;
Luke, JL ;
Levin, IW ;
Lewis, EN .
NATURE MEDICINE, 1997, 3 (02) :235-237
[10]   Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy [J].
Koljenovic, S ;
Choo-Smith, LP ;
Schut, TCB ;
Kros, JM ;
van den Berge, HJ ;
Puppels, GJ .
LABORATORY INVESTIGATION, 2002, 82 (10) :1265-1277