CO2 partial density distribution during high-pressure mixing with ethanol in the supercritical antisolvent process

被引:22
作者
Dowy, S. [1 ,2 ]
Braeuer, A. [1 ,2 ]
Schatz, R. [3 ]
Schluecker, E. [3 ]
Leipertz, A. [1 ,2 ]
机构
[1] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Lehrstuhl Tech Thermodynam, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Lehrstuhl Prozessmaschinen & Anlagentech, D-91058 Erlangen, Germany
基金
美国国家科学基金会;
关键词
Raman scattering; Partial density; Supercritical antisolvent process; SAS; Ethanol; Volume expansion; Mixing behaviour; CARBON-DIOXIDE; RAMAN-SCATTERING; MASS-TRANSFER; TEMPERATURE; SOLVENT; ATOMIZATION; DEPENDENCE; MIXTURES; PRECIPITATION; EQUILIBRIUM;
D O I
10.1016/j.supflu.2008.10.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A two-dimensional Raman scattering technique was used to locally and temporally resolve the effect of the mixture formation process on the carbon dioxide (CO2) partial density distribution in the pulsed supercritical antisolvent (SAS) process. The solvent ethanol was injected into the antisolvent CO2 in the vicinity of the binary mixture critical pressure (MCP). The acquired Raman images were converted into CO2 partial density distributions. For pressures far above the MCP, CO2 partial densities were not affected by the presence of the injected ethanol in the operational sphere of the jet. For pressures slightly below the MCP, CO2 partial densities were measured three times higher in the operational sphere of the ethanol spray than in the surrounding bulk region. To reach equivalent CO2 partial densities far above the MCP, chamber pressures as high as 100 MPa would be necessary. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 52 条
[1]   SOLVENT-INDUCED SHIFT OF THE RAMAN-SPECTRA IN SUPERCRITICAL FLUIDS [J].
AKIMOTO, S ;
KAJIMOTO, O .
CHEMICAL PHYSICS LETTERS, 1993, 209 (03) :263-268
[2]   Laminar jet dispersion and jet atomization in pressurized carbon dioxide [J].
Badens, E ;
Boutin, O ;
Charbit, G .
JOURNAL OF SUPERCRITICAL FLUIDS, 2005, 36 (01) :81-90
[3]  
Badilla JCDF, 2000, J SUPERCRIT FLUID, V17, P13
[4]  
Baldyga J., 2004, Supercritical Fluid Technology for Dmg Product Development, P91
[5]   Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays [J].
Bellan, J .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2000, 26 (4-6) :329-366
[6]   Raman spectroscopic evidence for cooperative C-H•••O interactions in the acetaldehyde-CO2 complex [J].
Blatchford, MA ;
Raveendran, P ;
Wallen, SL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (50) :14818-14819
[7]   Investigation of the combustion process in an auxiliary heating system using dual-pump CARS [J].
Braeuer, A. ;
Beyrau, F. ;
Weikl, M. C. ;
Seeger, T. ;
Kiefer, J. ;
Leipertz, A. ;
Holzwarth, A. ;
Soika, A. .
JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (06) :633-640
[8]   Phase equilibrium of ethanol plus CO2 and acetone plus CO2 at elevated pressures [J].
Day, CY ;
Chang, CJ ;
Chen, CY .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1996, 41 (04) :839-843
[9]   Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets [J].
Decker, M ;
Schik, A ;
Meier, UE ;
Stricker, W .
APPLIED OPTICS, 1998, 37 (24) :5620-5627
[10]   MICROCELLULAR MICROSPHERES AND MICROBALLOONS BY PRECIPITATION WITH A VAPOR-LIQUID COMPRESSED FLUID ANTISOLVENT [J].
DIXON, DJ ;
LUNABARCENAS, G ;
JOHNSTON, KP .
POLYMER, 1994, 35 (18) :3998-4005