Slow forcing in the projective dynamics method

被引:9
作者
Novotny, MA [1 ]
Kolesik, M
Rikvold, PA
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
[2] Slovak Acad Sci, Inst Phys, Bratislava 84228, Slovakia
[3] Florida State Univ, Ctr Mat Res & Technol, MARTECH, Tallahassee, FL 32306 USA
[4] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0010-4655(99)00347-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a proof that when there is no forcing the recently introduced projective dynamics Monte Carlo algorithm gives the exact lifetime of the metastable state, within statistical uncertainties. We also show numerical evidence illustrating that for slow forcing the approach to the zero-forcing limit is rather rapid. The model studied numerically is the 3-dimensional 3-state Potts ferromagnet. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:330 / 333
页数:4
相关论文
共 7 条
[1]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[2]   Projection method for statics and dynamics of lattice spin systems [J].
Kolesik, M ;
Novotny, MA ;
Rikvold, PA .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3384-3387
[3]  
KOLESIK M, IN PRESS MAT RES SOC
[4]   METHOD TO STUDY RELAXATION OF METASTABLE PHASES - MACROSCOPIC MEAN-FIELD DYNAMICS [J].
LEE, JY ;
NOVOTNY, MA ;
RIKVOLD, PA .
PHYSICAL REVIEW E, 1995, 52 (01) :356-372
[5]  
Novotny M. A., 1995, Computers in Physics, V9, P46, DOI 10.1063/1.168537
[6]   MAGNETIZATION PROBABILITIES AND METASTABILITY IN THE ISING-MODEL [J].
SCHULMAN, LS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (01) :237-250
[7]  
SWENDSEN RH, 1995, MONTE CARLO METHOD C, P75