Harmonic polylogarithms

被引:828
作者
Remiddi, E
Vermaseren, JAM
机构
[1] Univ Karlsruhe, Inst Theoret TeilchenPhys, D-76128 Karlsruhe, Germany
[2] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[4] NIKHEF, NL-1009 DB Amsterdam, Netherlands
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2000年 / 15卷 / 05期
关键词
D O I
10.1142/S0217751X00000367
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The harmonic polylogarithms (hpl's) are introduced. They are a generalization of Nielsen's polylogarithms, satisfying a product algebra (the product of two hpl's is in turn a combination of hpl's) and forming a set closed under the transformation of the arguments x = 1/z and x = (1- t)/(1 + t). The coefficients of their expansions and their Mellin transforms are harmonic sums.
引用
收藏
页码:725 / 754
页数:30
相关论文
共 14 条
[1]  
[Anonymous], 1909, ABHANDLUNGEN KAISERL
[2]  
BARBIERI R, 1972, NUOV CIMEN S I FIS A, VA 11, P865, DOI 10.1007/BF02728546
[3]   ELECTRON FORM-FACTORS UP TO FOURTH ORDER .1. [J].
BARBIERI, R ;
MIGNACO, JA ;
REMIDDI, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 11 (04) :824-+
[4]  
BORWEIN JM, 1997, ELECT J COMBINATORIC, V4
[5]  
BORWEIN JM, 98106 CECM
[6]  
Broadhurst D., COMMUNICATION
[7]   Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops [J].
Broadhurst, DJ ;
Kreimer, D .
PHYSICS LETTERS B, 1997, 393 (3-4) :403-412
[8]  
Kolbig K. S., 1970, BIT (Nordisk Tidskrift for Informationsbehandling), V10, P38, DOI 10.1007/BF01940890
[9]  
Lewin L., 1958, Dilogarithms and Associated Functions
[10]  
Racah G., 1934, NUOVO CIMENTO, V11, P461, DOI DOI 10.1007/BF02959918