Evidence for DNA bending at the T7 RNA polymerase promoter

被引:38
作者
Ujvári, A [1 ]
Martin, CT [1 ]
机构
[1] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
关键词
D O I
10.1006/jmbi.1999.3418
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phage T7 RNA polymerase is the only DNA-dependent RNA polymerase for which we have a high-resolution structure of the promoter-bound complex. Recent studies with the more complex RNA polymerases have suggested a role for DNA wrapping in the initiation of transcription. Here, circular permutation gel retardation assays provide evidence that the polymerase does indeed bend its promoter DNA. A complementary set of experiments employing differential phasing from an array of phased A-tracts provides further evidence for both intrinsic and polymerase-induced bends in the T7 RNA polymerase promoter DNA. The bend in the complex is predicted to be about 40-60 degrees and to be centered around positions -2 to +1, at the start site for transcription, while the intrinsic bend is much smaller (about 10 degrees). These results, viewed in the light of a recent crystal structure for the complex, suggest a mechanism by which binding leads directly to bending. Bending at the start site would then facilitate the melting necessary to initiate transcription. (C) 2000 Academic Press.
引用
收藏
页码:1173 / 1184
页数:12
相关论文
共 45 条
[1]   ALLOSTERIC UNDERWINDING OF DNA IS A CRITICAL STEP IN POSITIVE CONTROL OF TRANSCRIPTION BY HG-MERR [J].
ANSARI, AZ ;
CHAEL, ML ;
OHALLORAN, TV .
NATURE, 1992, 355 (6355) :87-89
[2]  
ANSARI AZ, 1995, NATURE, V374, P371
[3]   SPECIFIC BINDING OF MONOMERIC BACTERIOPHAGE-T3 AND BACTERIOPHAGE-T7 RNA-POLYMERASES TO THEIR RESPECTIVE COGNATE PROMOTERS REQUIRES THE INITIATING RIBONUCLEOSIDE TRIPHOSPHATE (GTP) [J].
BASU, S ;
MAITRA, U .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 190 (03) :425-437
[4]   The nature of the nucleosomal barrier to transcription: Direct observation of paused intermediates by electron cryomicroscopy [J].
Bednar, J ;
Studitsky, VM ;
Grigoryev, SA ;
Felsenfeld, O ;
Woodcock, CL .
MOLECULAR CELL, 1999, 4 (03) :377-386
[5]   PREDICTING DNA DUPLEX STABILITY FROM THE BASE SEQUENCE [J].
BRESLAUER, KJ ;
FRANK, R ;
BLOCKER, H ;
MARKY, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3746-3750
[6]   Structural basis for initiation of transcription from an RNA polymerase-promoter complex [J].
Cheetham, GMT ;
Jeruzalmi, D ;
Steitz, TA .
NATURE, 1999, 399 (6731) :80-83
[7]   DNA bending and wrapping around RNA polymerase: A "revolutionary" model describing transcriptional mechanisms [J].
Coulombre, B ;
Burton, ZF .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :457-+
[8]   HO-CENTER-DOT AND DNASE-I PROBING OF E-SIGMA(70) RNA POLYMERASE-LAMBDA-P-R PROMOTER OPEN COMPLEXES - MG2+ BINDING AND ITS STRUCTURAL CONSEQUENCES AT THE TRANSCRIPTION START SITE [J].
CRAIG, ML ;
SUH, WC ;
RECORD, MT .
BIOCHEMISTRY, 1995, 34 (48) :15624-15632
[9]   3-DIMENSIONAL STRUCTURE OF ESCHERICHIA-COLI RNA-POLYMERASE HOLOENZYME DETERMINED BY ELECTRON CRYSTALLOGRAPHY [J].
DARST, SA ;
KUBALEK, EW ;
KORNBERG, RD .
NATURE, 1989, 340 (6236) :730-732
[10]   CLONING AND EXPRESSION OF THE GENE FOR BACTERIOPHAGE-T7 RNA-POLYMERASE [J].
DAVANLOO, P ;
ROSENBERG, AH ;
DUNN, JJ ;
STUDIER, FW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :2035-2039