Guiding-center pulse dynamics in nonreturn-to-zero (return-to-zero) communications systems with mean-zero dispersion

被引:12
作者
Bronski, JC
Kutz, JN
机构
[1] PRINCETON UNIV, PROGRAM APPL MATH, PRINCETON, NJ 08544 USA
[2] AT&T BELL LABS, RES & LUCENT TECHNOL, MURRAY HILL, NJ 07974 USA
关键词
D O I
10.1364/JOSAB.14.000903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analytically describe the effective evolution of a pulse (nonreturn-to-zero or return-to-zero) that propagates under the influence of a mean-zero dispersion map, nonlinearity, loss, and periodic amplification. On averaging, the governing equation is reduced to a set of coupled, nonlinear diffusion equations that describe the evolution of the pulse amplitude and phase and which capture the long-term interaction of dispersion and non-linearity. The averaged equations are shown to be in good agreement with the full evolution until a predicted wave-breaking behavior is observed in the full equations. (C) 1997 Optical Society of America.
引用
收藏
页码:903 / 911
页数:9
相关论文
共 31 条
[1]  
AGRAWAL GP, 1989, NONLINEAR FIBER OPTI, P44
[2]  
Barenblatt G, 1979, SIMILARITY SELF SIMI, DOI 10.1007/978-1-4615-8570-1
[3]  
Bender C M, 1978, ADV MATH METHODS SCI
[4]  
BERGANO NS, 1995, OSA TECHNICAL DIGEST, V8
[5]  
BERGANO NS, 1996, OSA TECHNICAL DIGEST, V2
[6]  
BRONSKI JC, 1994, NATO ADV SCI INST SE, V320, P21
[7]   Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management [J].
Bronski, JC ;
Kutz, JN .
OPTICS LETTERS, 1996, 21 (13) :937-939
[8]  
BRONSKI JC, IN PRESS PHYSICA D
[9]   1/3RD TERABIT/S TRANSMISSION THROUGH 150-KM OF DISPERSION-MANAGED FIBER [J].
CHRAPLYVY, AR ;
GNAUCK, AH ;
TKACH, RW ;
DEROSIER, RM ;
GILES, CR ;
NYMAN, BM ;
FERGUSON, GA ;
SULHOFF, JW ;
ZYSKIND, JL .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (01) :98-100
[10]   Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation [J].
Gabitov, IR ;
Turitsyn, SK .
OPTICS LETTERS, 1996, 21 (05) :327-329