Limit theorems for regression models of time series of counts

被引:4
作者
Blais, M
MacGibbon, B
Roy, R
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Quebec, Gerad, Montreal, PQ H3C 3P8, Canada
[3] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[5] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
Poisson regression; estimating equations; exponential family distribution; asymptotic distribution; mixing;
D O I
10.1016/S0167-7152(99)00101-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Here we present some limit theorems for a general class of generalized linear models describing time series of counts Y-1,..., Y-n. Following Zeger (Biometrika 75 (1988) 621-629), we suppose that the serial correlation depends on an unobservable latent process {epsilon(t)}. Assuming that the conditional distribution of Y-t given epsilon(t) belongs to the exponential family, that Y-l\epsilon(l),..., Y-n\epsilon(n) are independent, and that the latent process satisfies a mixing condition, it is shown that the quasi-likelihood estimators of the regression coefficients are asymptotically normally distributed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 17 条
[1]   A NOTE ON STRONG MIXING OF ARMA PROCESSES [J].
ATHREYA, KB ;
PANTULA, SG .
STATISTICS & PROBABILITY LETTERS, 1986, 4 (04) :187-190
[2]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[3]   EQUIVALENCE OF MAXIMUM LIKELIHOOD AND WEIGHTED LEAST-SQUARES ESTIMATES IN EXPONENTIAL FAMILY [J].
BRADLEY, EL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (341) :199-200
[4]   MONTE-CARLO EM ESTIMATION FOR TIME-SERIES MODELS INVOLVING COUNTS [J].
CHAN, KS ;
LEDOLTER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :242-252
[5]  
COX DR, 1981, SCAND J STAT, V8, P93
[7]  
Davis RA, 1999, STAT TEXTB MONOG, V158, P63
[8]  
Doukhan P., 1994, Mixing: Properties and Examples
[9]  
GODAMBE VP, 1991, ESTIMATING FUNCTIONS, P3
[10]   PSEUDO MAXIMUM-LIKELIHOOD METHODS - APPLICATIONS TO POISSON MODELS [J].
GOURIEROUX, C ;
MONFORT, A ;
TROGNON, A .
ECONOMETRICA, 1984, 52 (03) :701-720