Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to Azoles

被引:148
作者
Chau, AS [1 ]
Mendrick, CA [1 ]
Sabatelli, FJ [1 ]
Loebenberg, D [1 ]
McNicholas, PM [1 ]
机构
[1] Schering Plough Res Inst, Kenilworth, NJ 07033 USA
关键词
D O I
10.1128/AAC.48.6.2124-2131.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Real-time quantitative PCR was used to measure expression levels of genes encoding efflux pumps, ERG11 and two control genes, ACT1 and PMA1, in a collection of 14 fluconazole-susceptible Candida albicans isolates. For each gene, average expression levels and variations within the population were determined. These values were then used as reference points to make predictions about the molecular basis of resistance in 38 clinical isolates (the majority of which were resistant to fluconazole) obtained from 18 patients treated with posaconazole for refractory oropharyngeal candidiasis. For each of the 38 isolates, the expression levels of genes encoding efflux pumps, ERG11 and the control genes, were measured as above. Comparison of the two data sets revealed that expression of ACT1 and PMA1 did not vary significantly between the two sets of isolates. In contrast, MDR1, ERG11, CDR1, and CDR2 were overexpressed in 3, 4, 14, and 35, respectively, of the isolates from patients treated with azoles. In addition to these changes, the patient isolates all had at least one and often multiple missense mutations in ERG11. Select ERG11 alleles were expressed in Saccharomyces cerevisiae; all of the alleles tested conferred reduced susceptibility to fluconazole. Despite both the increases in pump expression and the ERG11 mutations, only one of the patient isolates exhibited a large decrease in posaconazole susceptibility.
引用
收藏
页码:2124 / 2131
页数:8
相关论文
共 20 条
[1]   In vitro and in vivo activities of SCH 56592 (posaconazole), a new triazole antifungal agent, against Aspergillus and Candida [J].
Cacciapuoti, A ;
Loebenberg, D ;
Corcoran, E ;
Menzel, F ;
Moss, EL ;
Norris, C ;
Michalski, M ;
Raynor, K ;
Halpern, J ;
Mendrick, C ;
Arnold, B ;
Antonacci, B ;
Parmegiani, R ;
Yarosh-Tomaine, T ;
Miller, GH ;
Hare, RS .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (08) :2017-2022
[2]   Antifungal drug resistance to azoles and polyenes [J].
Canuto, MM ;
Gutierrez, F .
LANCET INFECTIOUS DISEASES, 2002, 2 (09) :550-563
[3]   A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance [J].
de Micheli, M ;
Bille, J ;
Schueller, C ;
Sanglard, D .
MOLECULAR MICROBIOLOGY, 2002, 43 (05) :1197-1214
[4]   Changes in susceptibility to posaconazole in clinical isolates of Candida albicans [J].
Li, X ;
Brown, N ;
Chau, AS ;
López-Ribot, JL ;
Ruesga, MT ;
Quindos, G ;
Mendrick, CA ;
Hare, RS ;
Loebenberg, D ;
DiDomenico, B ;
McNicholas, PM .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2004, 53 (01) :74-80
[5]   Transcriptional analyses of antifungal drug resistance in Candida albicans [J].
Lyons, CN ;
White, TC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (09) :2296-2303
[6]   Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans [J].
Marichal, P ;
Koymans, L ;
Willemsens, S ;
Bellens, D ;
Verhasselt, P ;
Luyten, W ;
Borgers, M ;
Ramaekers, FCS ;
Odds, FC ;
Vanden Bossche, H .
MICROBIOLOGY-SGM, 1999, 145 :2701-2713
[7]   Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR [J].
Marr, KA ;
Lyons, CN ;
Rustad, T ;
Bowden, RA ;
White, TC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (10) :2584-2589
[8]   CANDIDIASIS [J].
MEUNIER, F .
EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 1989, 8 (05) :438-447
[9]   Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation [J].
Morschhäuser, J ;
Michel, S ;
Hacker, J .
MOLECULAR AND GENERAL GENETICS, 1998, 257 (04) :412-420
[10]  
National Committee for Clinical Laboratory Standards, 1997, M27A NAT COMM CLIN L