Tracking epitope-specific T cells

被引:227
作者
Moon, James J. [1 ,2 ]
Chu, H. Hamlet [1 ,2 ]
Hataye, Jason [1 ,2 ]
Pagan, Antonio J. [1 ,2 ]
Pepper, Marion [1 ,2 ]
McLachlan, James B. [1 ,2 ]
Zell, Traci
Jenkins, Marc K. [1 ,2 ]
机构
[1] Univ Minnesota, Sch Med, Dept Microbiol, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Sch Med, Ctr Immunol, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
CLASS-II TETRAMERS; EX-VIVO ANALYSIS; IN-VIVO; PRECURSOR FREQUENCY; FUNCTIONAL AVIDITY; PEPTIDE TETRAMERS; ANTIGEN-RECEPTOR; CLONAL EXPANSION; PERIPHERAL-BLOOD; IMMUNE-RESPONSE;
D O I
10.1038/nprot.2009.9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The tracking of antigen-specific T cells in vivo is a useful approach for the study of the adaptive immune response. This protocol describes how populations of T cells specific for a given peptide-major histocompatibility complex (pMHC) epitope can be tracked based solely on T-cell receptor (TCR) specificity as opposed to other indirect methods based on function. The methodology involves the adoptive transfer of TCR transgenic T cells with defined epitope specificity into histocompatible mice and the subsequent detection of these cells through the use of congenic or clonotypic markers. Alternatively, endogenous epitope-specific T cells can be tracked directly through the use of pMHC tetramers. Using magnetic bead-based enrichment and advanced multiparameter flow cytometry, populations as small as five epitope-specific T cells can be detected from the peripheral lymphoid organs of a mouse. The adoptive transfer procedure can be completed within 3 h, whereas analysis of epitope-specific cells from mice can be completed within 6 h.
引用
收藏
页码:565 / 581
页数:17
相关论文
共 72 条
[1]   Phenotypic analysis of antigen-specific T lymphocytes [J].
Altman, JD ;
Moss, PAH ;
Goulder, PJR ;
Barouch, DH ;
McHeyzerWilliams, MG ;
Bell, JI ;
McMichael, AJ ;
Davis, MM .
SCIENCE, 1996, 274 (5284) :94-96
[2]   T-cell epitope mapping using the ELISPOT approach [J].
Anthony, DD ;
Lehmann, PV .
METHODS, 2003, 29 (03) :260-269
[3]   Priming of CD8+ CTL effector cells in mice by immunization with a stress protein influenza virus nucleoprotein fusion molecule [J].
Anthony, LSD ;
Wu, HC ;
Sweet, H ;
Turnnir, C ;
Boux, LJ ;
Mizzen, LA .
VACCINE, 1999, 17 (04) :373-383
[4]   Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection [J].
Bar, Joshua J. ;
Khanna, Kamal M. ;
Lefrancois, Leo .
IMMUNITY, 2008, 28 (06) :859-869
[5]   Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells [J].
Barnes, E ;
Ward, SM ;
Kasprowicz, VO ;
Dusheiko, G ;
Klenerman, P ;
Lucas, M .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2004, 34 (06) :1570-1577
[6]   CD8+T-cell mediated tumor protection by Pseudomonas exotoxin fused to ovalbumin in C57BL/6 mice [J].
Becerra, JC ;
Arthur, JF ;
Landucci, GR ;
Forthal, DN ;
Theuer, CP .
SURGERY, 2003, 133 (04) :404-410
[7]   Estimating the precursor frequency of naive antigen-specific CD8 T cells [J].
Blattman, JN ;
Antia, R ;
Sourdive, DJD ;
Wang, XC ;
Kaech, SM ;
Murali-Krishna, K ;
Altman, JD ;
Ahmed, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 195 (05) :657-664
[8]   Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding [J].
Bodinier, M ;
Peyrat, MA ;
Tournay, C ;
Davodeau, F ;
Romagne, F ;
Bonneville, M ;
Lang, F .
NATURE MEDICINE, 2000, 6 (06) :707-710
[10]   Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire [J].
Burchill, Matthew A. ;
Yang, Jianying ;
Vang, Kieng B. ;
Moon, James J. ;
Chu, H. Hamlet ;
Lio, Chan-Wang J. ;
Vegoe, Amanda L. ;
Hsieh, Chyi-Song ;
Jenkins, Marc K. ;
Farrar, Michael A. .
IMMUNITY, 2008, 28 (01) :112-121