Sharkovskii type of cycles

被引:2
作者
Blokh, AM [1 ]
Coven, EM [1 ]
机构
[1] WESLEYAN UNIV,DEPT MATH,MIDDLETOWN,CT 06459
关键词
D O I
10.1112/blms/28.4.417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sharkovskii type of a map of an interval is the Sharkovskii-greatest integer t such that it has a periodic point of period t. The Sharkovskii type of a cycle (that is, a cyclic permutation) is the Sharkovskii type of the 'connect the dots' map determined by it. For n greater than or equal to 2, let C(n) denote the finite set of integers which are Sharkovskii types of n-cycles. We give an internal characterization of C(n) and an n(4)-time algorithm for determining the Sharkovskii type of an n-cycle.
引用
收藏
页码:417 / 424
页数:8
相关论文
共 10 条
[1]  
Alseda L., 1993, Combinatorial Dynamics and Entropy in Dimension One
[4]   TOPOLOGICAL CONJUGACY AND TRANSITIVITY FOR A CLASS OF PIECEWISE MONOTONE MAPS OF THE INTERVAL [J].
BLOCK, L ;
COVEN, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 300 (01) :297-306
[5]  
Block L., 1980, T AM MATH SOC, V260, P555
[6]  
BRASSARD G, 1987, ALGORITHMICS THEORY
[7]  
COLLET P, 1980, PROGR PHYSICS, V1
[8]   NO DIVISION IMPLIES CHAOS [J].
LI, TY ;
MISIUREWICZ, M ;
PIANIGIANI, G ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (01) :191-199
[9]  
Sharkovsky A., 1964, UKR MAT ZH, V16, P61
[10]   THEOREM OF SARKOVSKII ON EXISTENCE OF PERIODIC ORBITS OF CONTINUOUS ENDOMORPHISMS OF REAL LINE [J].
STEFAN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 54 (03) :237-248