Stochastic reduction in nonlinear quantum mechanics

被引:11
作者
Brody, DC [1 ]
Hughston, LP
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2002年 / 458卷 / 2021期
关键词
nonlinear quantum mechanics; quantum measurement; stochastic differential geometry; Kahler diffusion; holomorphic sectional curvature;
D O I
10.1098/rspa.2001.0914
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stochastic extensions of the Schrodinger equation have attracted attention recently as plausible models for state reduction in quantum mechanics. Here we formulate a general approach to stochastic Schrodinger dynamics in the case of a nonlinear state space of the type proposed by Kibble. We derive a number of new identities for observables in the nonlinear theory, and establish general criteria on the curvature of the state space sufficient to ensure collapse of the wave function.
引用
收藏
页码:1117 / 1127
页数:11
相关论文
共 34 条
[1]   Derivation of the Lindblad generator structure by use of the Ito stochastic calculus [J].
Adler, SL .
PHYSICS LETTERS A, 2000, 265 (1-2) :58-61
[2]   Structure and properties of Hughston's stochastic extension of the Schrodinger equation [J].
Adler, SL ;
Horwitz, LP .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) :2485-2499
[3]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[4]  
ASHTEKAR A, 1998, EINSTEINS PATH
[5]   Geometric quantum mechanics [J].
Brody, DC ;
Hughston, LP .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) :19-53
[6]   GENERALIZED TRANSITION-PROBABILITY, MOBILITY AND SYMMETRIES [J].
CANTONI, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (02) :153-158
[7]   GENERALIZED TRANSITION-PROBABILITY [J].
CANTONI, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :125-128
[8]   QUANTUM-MECHANICS AS AN INFINITE-DIMENSIONAL HAMILTONIAN SYSTEM WITH UNCERTAINTY STRUCTURE .1. [J].
CIRELLI, R ;
MANIA, A ;
PIZZOCCHERO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (12) :2891-2897
[9]   CONTINUOUS QUANTUM MEASUREMENT AND ITO FORMALISM [J].
DIOSI, L .
PHYSICS LETTERS A, 1988, 129 (8-9) :419-423
[10]   The geometry of coherent states [J].
Field, TR ;
Hughston, LP .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :2568-2583