Testing a flexible-receptor docking algorithm in a model binding site

被引:140
作者
Wei, BQ
Weaver, LH
Ferrari, AM
Matthews, BW [1 ]
Shoichet, BK
机构
[1] Univ Oregon, Howard Hughes Med Inst, Inst Mol Biol, Eugene, OR 97403 USA
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
induced fit; molecular docking; conformational energy; X-ray crystallography; T4; lysozyme;
D O I
10.1016/j.jmb.2004.02.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sampling receptor flexibility is challenging for database docking. We consider a method that treats multiple flexible regions of the binding site independently, recombining them to generate different discrete conformations. This algorithm scales linearly rather than exponentially with the receptor's degrees of freedom. The method was first evaluated for its ability to identify known ligands of a hydrophobic cavity mutant of T4 lysozyme (L99A). Some 200,000 molecules of the Available Chemical Directory (ACD) were docked against an ensemble of cavity conformations. Surprisingly, the enrichment of known ligands from among a much larger number of decoys in the ACD was worse than simply docking to the apo conformation alone. Large decoys, accommodated in the larger cavity conformations sampled in the ensemble, were ranked better than known small ligands. The calculation was redone with an energy correction term that considered the cost of forming the larger cavity conformations. Enrichment improved, as did the balance between high-ranking large and small ligands. In a second retrospective test, the ACD was docked against a conformational ensemble of thymidylate synthase. Compared to docking against individual enzyme conformations, the flexible receptor docking approach improved enrichment of known ligands. Including a receptor conformational energy weighting term improved enrichment further. To test the method prospectively, the ACD database was docked against another cavity mutant of lysozyme (L99A/M102Q). A total of 18 new compounds predicted to bind this polar cavity and to change its conformation were tested experimentally; 14 were found to bind. The bound structures for seven ligands were determined by X-ray crystallography. The predicted geometries of these ligands all corresponded to the observed geometries to within 0.7 Angstrom RMSD or better. Significant conformational changes of the cavity were observed in all seven complexes. In five structures, part of the observed accommodations were correctly predicted; in two structures, the receptor conformational changes were unanticipated and thus never sampled. These results suggest that although sampling receptor flexibility can lead to novel ligands that would have been missed when docking a rigid structure, it is also important to consider receptor conformational energy. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1161 / 1182
页数:22
相关论文
共 63 条
[1]   High-throughput docking for lead generation [J].
Abagyan, R ;
Totrov, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2001, 5 (04) :375-382
[2]   THE ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4-LYSOZYME [J].
BALDWIN, EP ;
HAJISEYEDJAVADI, O ;
BAASE, WA ;
MATTHEWS, BW .
SCIENCE, 1993, 262 (5140) :1715-1718
[3]   Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening [J].
Boehm, HJ ;
Boehringer, M ;
Bur, D ;
Gmuender, H ;
Huber, W ;
Klaus, W ;
Kostrewa, D ;
Kuehne, H ;
Luebbers, T ;
Meunier-Keller, N .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (14) :2664-2674
[4]   Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis [J].
Brenk, R ;
Naerum, L ;
Grädler, U ;
Gerber, HD ;
Garcia, GA ;
Reuter, K ;
Stubbs, MT ;
Klebe, G .
JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (07) :1133-1143
[5]   A method for including protein flexibility in protein-ligand docking: Improving tools for database mining and virtual screening [J].
Broughton, HB .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2000, 18 (03) :247-+
[6]  
CAMBILLAU C, 1997, TURBO FRODO
[7]   Developing a dynamic pharmacophore model for HIV-1 integrase [J].
Carlson, HA ;
Masukawa, KM ;
Rubins, K ;
Bushman, FD ;
Jorgensen, WL ;
Lins, RD ;
Briggs, JM ;
McCammon, JA .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (11) :2100-2114
[8]   Protein flexibility and drug design: how to hit a moving target [J].
Carlson, HA .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2002, 6 (04) :447-452
[9]   Model for aqueous solvation based on class IV atomic charges and first solvation shell effects [J].
Chambers, CC ;
Hawkins, GD ;
Cramer, CJ ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (40) :16385-16398
[10]   FlexE: Efficient molecular docking considering protein structure variations [J].
Claussen, H ;
Buning, C ;
Rarey, M ;
Lengauer, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :377-395