Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc - A mammalian homolog of CDC20/Fizzy/slp1

被引:123
作者
Weinstein, J
机构
[1] Amgen Inc., Thousand Oaks
[2] Amgen Inc., Thousand Oaks, CA 91320, 14-1-B
关键词
D O I
10.1074/jbc.272.45.28501
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p55Cdc is a mammalian protein that shows high homology to the cell cycle proteins Cdc20p of Saccharomyces cerevisiae and the product of the Drosophila fizzy (fly) gene, both of which contain WD repeats and are thought to be required for the metaphase-anaphase transition. The fzy mutants exhibit a metaphase arrest phenotype, which is accompanied by stabilization of cyclins A and B, leading to the hypothesis that fzy function is required for cell cycle-regulated ubiquitin-mediated proteolysis. p55Cdc expression was initiated at the G(1)/S transition and steady state levels of p55Cdc were highest at M and lowest in G(1). Inhibition of the 26 S proteasome prevented both mitotic exit and loss of p55Cdc at the M/G(1) transition, suggesting that p55Cdc degradation was mediated by the cell cycle-regulated proteolytic pathway. Immune complexes of p55Cdc obtained at different cell cycle stages showed a variety of proteins with dramatic differences observed in the pattern of associated proteins during the transition from G(2) to M. Immunolocalization of p55Cdc demonstrated dynamic changes in p55Cdc localization as the cells transit mitosis. p55Cdc appears to act as a regulatory protein interacting with several other proteins, perhaps via its seven WD repeats, at multiple points in the cell cycle.
引用
收藏
页码:28501 / 28511
页数:11
相关论文
共 74 条
[1]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050
[2]   The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase [J].
Brandeis, M ;
Hunt, T .
EMBO JOURNAL, 1996, 15 (19) :5280-5289
[3]   CYCLIN-LIKE ACCUMULATION AND LOSS OF THE PUTATIVE KINETOCHORE MOTOR CENP-E RESULTS FROM COUPLING CONTINUOUS SYNTHESIS WITH SPECIFIC DEGRADATION AT THE END OF MITOSIS [J].
BROWN, KD ;
COULSON, RMR ;
YEN, TJ ;
CLEVELAND, DW .
JOURNAL OF CELL BIOLOGY, 1994, 125 (06) :1303-1312
[4]   Traction forces of cytokinesis measured with optically modified elastic substrata [J].
Burton, K ;
Taylor, DL .
NATURE, 1997, 385 (6615) :450-454
[5]   DUPLICATION OF SPINDLE PLAQUES AND INTEGRATION OF YEAST-CELL CYCLE [J].
BYERS, B ;
GOETSCH, L .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1973, 38 :123-131
[6]   The G-protein nanomachine [J].
Clapham, DE .
NATURE, 1996, 379 (6563) :297-299
[7]   Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation [J].
Clurman, BE ;
Sheaff, RJ ;
Thress, K ;
Groudine, M ;
Roberts, JM .
GENES & DEVELOPMENT, 1996, 10 (16) :1979-1990
[8]   IDENTIFICATION OF NOVEL CENTROMERE KINETOCHORE-ASSOCIATED PROTEINS USING MONOCLONAL-ANTIBODIES GENERATED AGAINST HUMAN MITOTIC CHROMOSOME SCAFFOLDS [J].
COMPTON, DA ;
YEN, TJ ;
CLEVELAND, DW .
JOURNAL OF CELL BIOLOGY, 1991, 112 (06) :1083-1097
[9]  
DAVIS FM, 1983, P NATL ACAD SCI-BIOL, V80, P2926, DOI 10.1073/pnas.80.10.2926
[10]   THE DROSOPHILA CELL-CYCLE GENE FIZZY IS REQUIRED FOR NORMAL DEGRADATION OF CYCLIN-A AND CYCLIN-B DURING MITOSIS AND HAS HOMOLOGY TO THE CDC20 GENE OF SACCHAROMYCES-CEREVISIAE [J].
DAWSON, IA ;
ROTH, S ;
ARTAVANISTSAKONAS, S .
JOURNAL OF CELL BIOLOGY, 1995, 129 (03) :725-737