Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics

被引:140
作者
Dima, RI [1 ]
Thirumalai, D [1 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
protein aggregation; prions; amyloids; phase diagram; Monte Carlo simulations;
D O I
10.1110/ps.4220102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many seemingly unrelated neurodegenerative disorders, such as amyloid and prion diseases, are associated with propagating fibrils whose structures are dramatically different from the native states of the corresponding monomers. This observation. along with the experimental demonstration that any protein can aggregate to form either fibrils or amorphous structures (inclusion bodies) under appropriate external conditions, suggest that there must be general principles that govern aggregation mechanisms. To probe generic aspects of prion-like behavior we use the model of Harrison. Chan, Prusiner, and Cohen. In this model. aggregation of a structure. that is conformationally distinct from the native state of the monomer, occurs by three parallel routes. Kinetic partitioning. which leads to parallel assembly pathways. occurs early in the aggregation process. In all pathways transient unfolding precedes polymerization and self-propagation. Chain polymerization is consistent with templated assembly, with the dimer being the minimal nucleus. The kinetic effciency of Rn-1 + G --> R-n (R is the aggregation prone state and G is either U, the unfolded state, or N, the native state of the monomer) is increased when polymerization occurs in the presence of a "seed" (a dimer). These results Support the seeded nucleated-polymerization model of fibril formation in amyloid peptides. To probe generic aspects of aggregation in two-state proteins, we use lattice models with side chains, The phase diagram in the (T, C) plane (T is the temperature and C is the polypeptide concentration) reveals a bewildering array of "phases" or structures. Explicit computations for dimers show that there are at least six phases including ordered structures and amorphous aggregates. In the ordered region of the phase diagram there are three distinct structures. We find ordered dimers (OD) in which each monomer is in the folded state and the interaction between the monomers occurs via a well-defined interface. In the domain-swapped structures a certain fraction of intrachain contacts are replaced by interchain contacts. In the parallel dimers the interface is stabilized by favorable intermolecular hydrophobic interactions. The kinetics of folding to OD shows that aggregation proceeds directly from U in a dynamically cooperative manner without populating partially structured intermediates. These results support the experimental observation that ordered aggregation in the two-state folders U1A and CI2 takes place from U. The contrasting aggregation processes in the two models suggest that there are several distinct mechanisms for polymerization that depend not only on the polypeptide sequence but also on external conditions (such as C, T, pH. and salt concentration).
引用
收藏
页码:1036 / 1049
页数:14
相关论文
共 49 条
[1]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[2]   3D DOMAIN SWAPPING - A MECHANISM FOR OLIGOMER ASSEMBLY [J].
BENNETT, MJ ;
SCHLUNEGGER, MP ;
EISENBERG, D .
PROTEIN SCIENCE, 1995, 4 (12) :2455-2468
[3]   NONGENETIC PROPAGATION OF STRAIN-SPECIFIC PROPERTIES OF SCRAPIE PRION PROTEIN [J].
BESSEN, RA ;
KOCISKO, DA ;
RAYMOND, GJ ;
NANDAN, S ;
LANSBURY, PT ;
CAUGHEY, B .
NATURE, 1995, 375 (6533) :698-700
[4]   Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [J].
Booth, DR ;
Sunde, M ;
Bellotti, V ;
Robinson, CV ;
Hutchinson, WL ;
Fraser, PE ;
Hawkins, PN ;
Dobson, CM ;
Radford, SE ;
Blake, CCF ;
Pepys, MB .
NATURE, 1997, 385 (6619) :787-793
[5]   Folding and aggregation of designed proteins [J].
Broglia, RA ;
Tiana, G ;
Pasquali, S ;
Roman, HE ;
Vigezzi, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12930-12933
[6]   SIDE-CHAIN ENTROPY AND PACKING IN PROTEINS [J].
BROMBERG, S ;
DILL, KA .
PROTEIN SCIENCE, 1994, 3 (07) :997-1009
[7]   KINETICS AND THERMODYNAMICS OF FOLDING IN MODEL PROTEINS [J].
CAMACHO, CJ ;
THIRUMALAI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :6369-6372
[8]   Designing conditions for in vitro formation of amyloid protofilaments and fibrils [J].
Chiti, F ;
Webster, P ;
Taddei, N ;
Clark, A ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3590-3594
[9]   Pathologic conformations of prion proteins [J].
Cohen, FE ;
Prusiner, SB .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :793-+
[10]   Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD [J].
Collinge, J ;
Sidle, KCL ;
Meads, J ;
Ironside, J ;
Hill, AF .
NATURE, 1996, 383 (6602) :685-690