Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton

被引:730
作者
Klausmeier, CA [1 ]
Litchman, E
Daufresne, T
Levin, SA
机构
[1] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[2] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
[3] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
D O I
10.1038/nature02454
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Redfield noted the similarity between the average nitrogen-to-phosphorus ratio in plankton (N: P = 16 by atoms) and in deep oceanic waters (N: P = 15; refs 1, 2). He argued that this was neither a coincidence, nor the result of the plankton adapting to the oceanic stoichiometry, but rather that phytoplankton adjust the N: P stoichiometry of the ocean to meet their requirements through nitrogen fixation, an idea supported by recent modelling studies(3,4). But what determines the N: P requirements of phytoplankton? Here we use a stoichiometrically explicit model of phytoplankton physiology and resource competition to derive from first principles the optimal phytoplankton stoichiometry under diverse ecological scenarios. Competitive equilibrium favours greater allocation to P-poor resource-acquisition machinery and therefore a higher N: P ratio; exponential growth favours greater allocation to P-rich assembly machinery and therefore a lower N: P ratio. P-limited environments favour slightly less allocation to assembly than N-limited or light-limited environments. The model predicts that optimal N: P ratios will vary from 8.2 to 45.0, depending on the ecological conditions. Our results show that the canonical Redfield N: P ratio of 16 is not a universal biochemical optimum, but instead represents an average of species-specific N: P ratios.
引用
收藏
页码:171 / 174
页数:4
相关论文
共 30 条
[1]   A THEORETICAL-MODEL FOR NUTRIENT-UPTAKE IN PHYTOPLANKTON [J].
AKSNES, DL ;
EGGE, JK .
MARINE ECOLOGY PROGRESS SERIES, 1991, 70 (01) :65-72
[2]  
[Anonymous], 2000, DYNAMIC ENERGY MASS, DOI DOI 10.1017/CBO9780511565403
[3]   A consumer's guide to phytoplankton primary productivity models [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (07) :1479-1491
[4]   Elemental composition of marine Prochlorococcus and Synechococcus:: Implications for the ecological stoichiometry of the sea [J].
Bertilsson, S ;
Berglund, O ;
Karl, DM ;
Chisholm, SW .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (05) :1721-1731
[5]   The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes [J].
Broecker, WS ;
Henderson, GM .
PALEOCEANOGRAPHY, 1998, 13 (04) :352-364
[6]   STOICHIOMETRY OF CARBON, NITROGEN, AND PHOSPHORUS IN MARINE PARTICULATE MATTER [J].
COPINMONTEGUT, C ;
COPINMONTEGUT, G .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1983, 30 (01) :31-46
[7]   NUTRIENT STATUS OF ALGAL CELLS IN CONTINUOUS CULTURE [J].
DROOP, MR .
JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, 1974, 54 (04) :825-855
[8]   Organism size, life history, and N:P stoichiometry [J].
Elser, JJ ;
Dobberfuhl, DR ;
MacKay, NA ;
Schampel, JH .
BIOSCIENCE, 1996, 46 (09) :674-684
[9]   Rationalizing elemental ratios in unicellular algae [J].
Falkowski, PG .
JOURNAL OF PHYCOLOGY, 2000, 36 (01) :3-6
[10]   Redfield revisited:: variability of C:N:P in marine microalgae and its biochemical basis [J].
Geider, RJ ;
La Roche, J .
EUROPEAN JOURNAL OF PHYCOLOGY, 2002, 37 (01) :1-17