The three maize sucrose synthase Isoforms differ in distribution, localization, and phosphorylation

被引:81
作者
Duncan, Kateri A.
Hardin, Shane C.
Huber, Steven C. [1 ]
机构
[1] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Program Physiol & Mol Plant Biol, Urbana, IL 61801 USA
[3] Univ Illinois, USDA ARS, Photosynthesis Res Unit, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
关键词
cellular localization; isoform-specific antibodies; membrane association; oligomerization; sucrose synthase; Zea mays;
D O I
10.1093/pcp/pcj068
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although sucrose synthase (SUS) is widely appreciated for its role in plant metabolism and growth, very little is known about the contribution of each of the SUS isoforms to these processes. Using isoform-specific antibodies, we evaluated the three known isoforms individually at the protein level. SUS1 and SUS-SH1 proteins have been studied previously; however, SUS2 (previously known as SUS3) has only been studied at the transcript level. Using SUS2 isoform-specific antibodies, we determined that this isoform is present in several maize tissues. The intracellular localization of all SUS isoforms was studied by cellular fractionation of leaves and developing kernels. Interestingly, SUS1 and SUS-SH1 were associated with membranes while SUS2 was not. The lack of membrane-associated SUS2 indicates that it might have a unique role in cytoplasmic sucrose metabolism. Using co-immunoprecipitation with kernel extracts, it was also established that SUS2 exists predominantly as a hetero-oligomer with SUS1, while SUS-SH1 forms only homooligomers. Using sequence-specific and phospho-specific antibodies, we haste established for the first time that SUS-SH1 is phosphorylated in vivo at the Ser10 site in kernels, similar to the SUS1 Ser15 site. In midveins, additional evidence suggests that SUS can be phosphorylated at a novel C-terminal threonine site. Together, these results show that the isoforms of SUS are important in both cytosolic and membrane-associated sucrose degradation, but that their unique attributes most probably impart isoform-specific functional roles.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 42 条
[1]   A MEMBRANE-ASSOCIATED FORM OF SUCROSE SYNTHASE AND ITS POTENTIAL ROLE IN SYNTHESIS OF CELLULOSE AND CALLOSE IN PLANTS [J].
AMOR, Y ;
HAIGLER, CH ;
JOHNSON, S ;
WAINSCOTT, M ;
DELMER, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9353-9357
[2]   SUCROSE SYNTHASE IN DEVELOPING MAIZE LEAVES - REGULATION OF ACTIVITY BY PROTEIN LEVEL DURING THE IMPORT TO EXPORT TRANSITION [J].
BINH, NQ ;
KRIVITZKY, M ;
HUBER, SC ;
LECHARNY, A .
PLANT PHYSIOLOGY, 1990, 94 (02) :516-523
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]  
Carlson SJ, 1996, MOL GEN GENET, V252, P303, DOI 10.1007/BF02173776
[5]   Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene [J].
Carlson, SJ ;
Chourey, PS ;
Helentjaris, T ;
Datta, R .
PLANT MOLECULAR BIOLOGY, 2002, 49 (01) :15-29
[6]   SPATIAL AND TEMPORAL EXPRESSION OF THE 2 SUCROSE SYNTHASE GENES IN MAIZE - IMMUNOHISTOLOGICAL EVIDENCE [J].
CHEN, YC ;
CHOUREY, PS .
THEORETICAL AND APPLIED GENETICS, 1989, 78 (04) :553-559
[7]   GENETIC-CONTROL OF SUCROSE SYNTHETASE IN MAIZE ENDOSPERM [J].
CHOUREY, PS .
MOLECULAR AND GENERAL GENETICS, 1981, 184 (03) :372-376
[8]   EXPRESSION OF 2 SUCROSE SYNTHETASE GENES IN ENDOSPERM AND SEEDLING CELLS OF MAIZE - EVIDENCE OF TISSUE SPECIFIC POLYMERIZATION OF PROTOMERS [J].
CHOUREY, PS ;
LATHAM, MD ;
STILL, PE .
MOLECULAR AND GENERAL GENETICS, 1986, 203 (02) :251-255
[9]   EPISTATIC INTERACTION AND FUNCTIONAL COMPENSATION BETWEEN THE 2 TISSUE-SPEC IFIC AND CELL-SPECIFIC SUCROSE SYNTHASE GENES IN MAIZE [J].
CHOUREY, PS ;
TALIERCIO, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (17) :7917-7921
[10]   Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis [J].
Chourey, PS ;
Taliercio, EW ;
Carlson, SJ ;
Ruan, YL .
MOLECULAR AND GENERAL GENETICS, 1998, 259 (01) :88-96