Spreading and shortest paths in systems with sparse long-range connections

被引:86
作者
Moukarzel, CF [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.R6263
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spreading according to simple rules (e.g., of fire or diseases) and shortest-path distances are studied on d-dimensional systems with a small density p per site of long-range connections (''small-world'' lattices). The volume V(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions as a function of time t. From this, the average shortest-path distance l(r) can be calculated as a function of Euclidean distance r. It is found that l(r)similar to r for r<r(c)=[2p Gamma(d)(d-1)!](-1/d) log(2p Gamma(d)L(d)) and l(r)similar to r(c) for r>r(c). The characteristic length r(c), which governs the behavior of shortest-path lengths, diverges logarithmically with L for all p>0. [S1063-651X(99)50312-7].
引用
收藏
页码:R6263 / R6266
页数:4
相关论文
共 17 条
[1]  
BARRAT A, IN PRESS EUR PHYS B
[2]  
BARRAT A, CONDMAT9903323
[3]   Small-world networks:: Evidence for a crossover picture [J].
Barthélémy, M ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3180-3183
[4]  
DEMENEZES MA, UNPUB
[5]  
DEMENEZES MA, CONDMAT9903426
[6]  
DOROGOVTSEV SN, CONDMAT9907445
[7]   How to quantify 'small-world networks'? [J].
Herzel, H .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1998, 6 (04) :301-303
[8]  
KASTURIRANGAN R, CONDMAT9904055
[9]  
KULKARNI RV, CONDMAT9905066
[10]  
KULKARNI RV, CONDMAT9908216